How Does Time Restricted Eating and Intermittent Fasting Work? Part I

If you’re interested in living a healthier lifestyle, you’ve probably heard of time restricted eating, or intermittent fasting and the success stories associated with incorporating these practices into your life. Despite living longer these days, the healthspan of many Americans is actually cut short as the average person spends seventeen of their final years living in poor health. This is due to chronic diseases such as diabetes, heart disease, cancer, and Alzheimer’s. In fact, 80 percent of older adults have at least one chronic condition, which is primarily related to their lifestyle.

What if time restricted eating or intermittent fasting could be a solution, one of the tools in the kit, to help combat the underlying factors that contribute to such diseases? Is time restricted eating and intermittent fasting simply a diet trend? Or is there a substantial and credible scientific basis to warrant its therapeutic use?

In this two-part series, we’ll explore these questions, and more.

In Part One we’ll examine the nature of time restricted eating and intermittent fasting, how it works, and the health benefits of both practices.

Part Two will cover methods of fasting and time restricted eating, along with answers to the most commonly asked questions regarding this popular practice.

What are time restricted eating and intermittent fasting?

Time restricted eating, (TRF) and intermittent fasting, also referred to as IF, are often treated as if they are one and the same, but there are actually some major differences between the two.

Time restricted eating involves simply alternating periods of eating with periods of fasting. With TRF, all of your eating is compressed into a 1 -12 hour feeding window. Most hours of the waking day, you’ll spend in a feeding state—say from 8:00 am to 4:00 pm. The other hours, you don’t consume any calories, although you are allowed calorie-less drinks, like water, sparkling water, decaffeinated tea and black coffee. Some people, (known as OMAD’s), eat only one meal a day (OMAD) and fast for 23 hours. 

The term intermittent fasting can be confusing and inaccurate. The term ruffles some researchers feathers because there are many different forms of fasting or restriction. It’s important to distinguish between them. The other problem with the term intermittent fasting is the flexibility around the term “fasting.” Most studies on various intermittent fasting schedules allow up to 700 calories per day on fasting days, while others don’t allow any calories. I want to be very particular about the definitions because I think different forms of fasting and different types of restriction may have different physiologic effects, and by lumping all forms of fasting together, we may dilute such insights.

Intermittent fasting includes the fasting-mimicking diet or FMD, where your intake is restricted to between 750 and 1050 calories (approximately) per day for a five-day period out of the month. This has been shown to mimic some of the physiological benefits of water fasting.

In addition, intermittent fasting also includes alternate day fasting or ADF. With this type of fasting a regular diet is followed for one day followed by a day of fasting. Another option is 5:2, which involves five days of regular eating followed by two fasting days in one week. With each of these methods, the fasting days can feature either a water fast or a calorie-reduced diet.

In contrast, a long-term or prolonged fast is considered more than two days and up to several weeks without food.

As you can see, there are several versions of intermittent fasting in which individuals can engage and that have been explored with scientific research. I’ll cover these in more detail when we discuss an intermittent fasting schedule and how to implement it in Part Two of this series.

How intermittent fasting works

If we take a look back in time to more ancestral or hunter-gatherer ways of eating, feasting was always balanced with famine. There were naturally times of the year when food was abundant and times of the year when food was scarce. The human body has the ability to adapt and thrive in both cases.

With the onset of our modern agricultural system, most of us in the developed world no longer have natural periods of fasting and life is a perpetual feast. We have access to whatever food we desire, grown anywhere in the world, every day. It’s no wonder that rates of obesity are the highest they’ve ever been, leading to inflammation and chronic disease. These days the body’s systems never have an opportunity to rest and reset.

So how exactly does intermittent fasting work? To answer this question, we need to go behind the scenes and into the cell to understand what’s happening on the cellular level, in both the fed state and the fasting state.

When we eat a meal, the body’s system is dedicated to processing food, which places the cell in growth mode. Insulin levels are higher, signaling the cell to grow. More specifically, insulin signals mTOR, meaning mammalian target of rapamycin, which instructs the cell to grow and divide. mTOR also decreases autophagy, the process of cellular recycling, that’s predominant during fasting and important for regular repair and maintenance of the cell. (1)

Autophagy naturally declines with age and decreased autophagy is related to neurodegenerative disease, cardiomyopathy, cancer, metabolic syndrome, suppressed immunity, and signs of aging. Boosting autophagy by means of intermittent fasting methods may help to slow or reverse these changes.

In the fasting state AMPK, or 5’ AMP-activated protein kinase, slows down mTOR. This causes fat breakdown and works to activate autophagy, allowing the body to run on its own stored fuel in the form of fat. AMPK also cleans up and repairs parts of the cell that don’t work, an important process that contributes to healthy aging and preventing diseases such as cancer. (1)

In addition, fasting, intermittent fasting, and calorie restriction down regulates IGF-1, or insulin-like growth factor-1. IGF-1 signaling is important for protein synthesis, as well as blood sugar regulation and growth. Later in life, increased IGF-1 can accelerate the aging process and decreasing it, through methods such as IF or time restricted eating, may increase longevity. Studies in mice indicate that employing different types of intermittent fasting can result in an increased lifespan. (1)

When food is scarce, the body conserves energy by downregulating or decreasing both mTOR and IGF-1, which increases stress resilience and protection on the cellular level. In fact, this can be considered inner rejuvenation, which reduces inflammation and increases autophagy. The results include increased stem cell regeneration and improved immunity, especially during fasts lasting more than a few days or by means of fasting-mimicking. (1)

Decreasing IGF-1 also decreases cellular senescence, in which the cell loses its ability to divide, as measured by telomere length. This process of cellular senescence is caused by underlying factors that produce oxidative stress, changes in the epigenetic gene expression, metabolic dysfunction, and mitochondrial dysfunction and the process is considered irreversible. However, decreasing IGF-1 or mTOR increases sirtuins, via the antiaging molecule NAD+, autophagy, and enables DNA repair. (1)

When the body is in a fed state, cells are highly acetylated so that genes are turned on. This helps cells to survive and proliferate. When these genes are on, the ones that are more related to fat metabolism, stress resistance, and cellular repair are turned down. (1)

This is what happens metabolically throughout a longer fast or a fast-mimicking diet over the course of five days.

  • 12 hours: The body transitions from primarily using glucose as fuel to increasing ketones as the preferred fuel for cells, including cells in the brain. (2) This causes an increase in BDNF, or brain-derived neurotropic factor, which allows for increased brain plasticity and neurogenesis. (1)
  • 18 hours: Ketone levels continue to rise. More ketones lead to a decreased need for glucose and insulin, along with more BDNF.
  • 24 hours: Cells increase autophagy, allowing for recycling and the breakdown of old or broken cellular components. (3)
  • 48 hours: Growth hormone (GH) is five times higher than normal, helping to preserve lean muscle mass, reduce fat, and is important for longevity. (4)
  • 54-72 hours: Insulin sensitivity increases and new stem cells and immune cells form. (5)

In summary, on the cellular level, fasting results in the following:

  • Decreased mTOR
  • Reduced IGF-1
  • Increased AMPK
  • Increased autophagy
  • Greater NAD+ and sirtuins
  • Increased ketones
  • Increased BDNF
  • Increased GH
  • Reduced levels of insulin and blood glucose
  • Decreased cellular senescence
  • Increased fat metabolism
  • Improved resistance to cellular stress
  • Reduced inflammation

Our bodies still need both the fed and fasting state, but in our modern culture the balance strongly favors always being fed. Intentional fasting may be a way to add greater balance to the system by allowing for these natural cellular processes that primarily happen in the fasted state.

Health Benefits of Intermittent Fasting and Time Restrictive Eating

Now that we’ve covered the science of fasting and time restricted eating, the question I’m often asked is whether these practices work in regard to health and longevity. This is an exciting area of study, using a wide variety of animal models, along with increasing numbers of studies in humans, in order to decipher the potential benefits of intermittent fasting and implementing time restricted eating.

Research has indicated a number of positive clinical benefits related to intermittent fasting and time restricted eating

  • Weight loss
  • Changes in body composition/fat loss
  • Improved insulin sensitivity or decreased insulin resistance
  • Reduced oxidative stress
  • Increased cellular autophagy
  • Stem cell regeneration
  • Optimized neurogenesis
  • Enhanced parasympathetic nervous system response
  • Improved gut motility, which is important for conditions like SIBO
  • Reduced heart rate
  • Reduced blood pressure
  • Improved lipid/cholesterol balance
  • Improved cognitive function
  • Improved detoxification
  • Improved physical performance
  • Improved sleep patterns
  • Improved immunity (1,6,7)

Taken together, all these clinical benefits translate into important applications related to longevity and chronic disease reversal. Intermittent fasting results are clearly beneficial for a variety of disease states and populations, including those with cardiovascular disease, diabetes, obesity, dementia, cancer, depression, and a number of other conditions. (6,7)

Intermittent fasting addresses the metabolic root causes that contribute to disease over time. IF and time restricted eating may be an important lifestyle tool, along with diet, physical activity, and stress reduction, that brings health more into balance.

In Part Two of this series on intermittent fasting, we explore the specifics of the different types of intermittent fasting, along with how to implement an intermittent fasting schedule. We’ll then cover some frequently asked questions on the topic and provide details and guidance to get you started.

If you’re looking for more personalized guidance, or are interested in our whole food fasting-mimicking program available through Justine Stenger and the Hoffman Centre for Integrative and Functional Medicine, please contact us for more information.

References:

  1. Hong, K. Intermittent Fasting and Fasting Mimicking: Science and Molecular Mechanisms. Presentation. University of Southern California.
  2. Anton SD, Moehl K, Donahoo WT, et al. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity (Silver Spring). 2018;26(2):254-268.
  3. Alirezaei M, Kemball CC, Flynn CT, Wood MR, Whitton JL, Kiosses WB. Short-term fasting induces profound neuronal autophagy. Autophagy. 2010;6(6):702-710.
  4. Hartman ML, Veldhuis JD, Johnson ML, et al. Augmented growth hormone (GH) secretory burst frequency and amplitude mediate enhanced GH secretion during a two-day fast in normal men. J Clin Endocrinol Metab. 1992;74(4):757-765.
  5. Klein S, Sakurai Y, Romijn JA, Carroll RM. Progressive alterations in lipid and glucose metabolism during short-term fasting in young adult men. Am J Physiol. 1993;265(5 Pt 1):E801-E806.
  6. Hong, K. Intermittent Fasting and Fasting Mimicking: Clinical Applications. Presentation. University of Southern California.
  7. Goldhamer, A. Can Fasting Save Your life. TrueNorth Health Center.
  8. Rynders CA, Thomas EA, Zaman A, Pan Z, Catenacci VA, Melanson EL. Effectiveness of Intermittent Fasting and Time-Restricted Feeding Compared to Continuous Energy Restriction for Weight Loss. Nutrients. 2019;11(10):2442. Published 2019 Oct 14.

Sharing is caring!

2 thoughts on “How Does Time Restricted Eating and Intermittent Fasting Work? Part I”

  1. Dr. Hoffman, I was once again pleased to receive your email and this time on restricted eating and fasting. The subjects you choose are always informative, give clarification and outline the results of research that is not readily available to most of your patients. Thank you.

    Reply

Leave a comment