A Discussion About Lyme Disease with Dr. Bruce Hoffman

A Discussion About Lyme Disease with Dr. Bruce Hoffman

The diagnosis and care of a patient with Lyme Disease is multifaceted and can be approached from more than one angle. It likely goes without saying that mainstream medicine is taking a much different approach than those in the functional and integrative space. 

In this video, I discuss the importance of looking at the larger history of said patient and how lab testing plays a role in proper diagnosis of Lyme Disease. 

If you are looking for answers regarding your situation, please contact our office today for more information. 

Watch the Video

A Discussion About Lyme Disease, with Dr. Bruce Hoffman

Reference Links

https://hoffmancentre.com/podcast-understanding-symptoms-and-treating-the-whole-person/

Transcript

Good afternoon everybody. I just finished an interview with the CBC (Canadian Broadcasting Corporation) and they wanted to talk about Lyme disease in Canada. We had a good, 20-minute chat that will probably be aired on some CBC broadcast in the fall. 

I was struck by one of the issues that often arises in my practice when I’m asked to treat complex multi-system, multi-symptom patients. They often come in and say, “I’ve got Lyme disease can you help me?” or “I’ve seen five doctors, naturopaths, et cetera, but I’m not better”.  

One of the biggest frustrations has been people believing that there’s one single trigger for their presentation of symptoms. They have one or two positive antibodies on their lab test, are told that’s a positive Lyme marker, and then are told by their medical provider that they should be on a full treatment program. I think that it’s medical malpractice to jump into the diagnosis and treatment of Lyme disease without a considered approach. 

We do know that there are two schools of thought in the standard of Lyme diagnosis. There are the traditional infectious disease specialists, who have very strict criteria for the diagnosis of Lyme disease, rightfully or wrongfully. Then there is a more broad approach to the understanding, diagnosis, and treatment of Lyme disease, which is purported and put forth by a group called ILADS, to which I happen to belong. 

The two schools of thought do not see eye to eye and that continual friction places the patient in the middle, trying to work out what is the best approach. 

Often patients get a diagnosis of Lyme disease from a provider they’ve seen based on the US test. They then get sent by their family doctor to an infectious disease specialist who reads them the riot act and lets them know that the tests are recording too many false positives, that they are irrelevant, that the lab is just trying to make money, or that the labs aren’t standardized. This battle goes back and forth, causes frustration for everyone, and the poor patient sits in the middle, trying to make sense of it all. 

Our aim is to talk about the differences between the two approaches, address the specifics as to why one group is vehemently certain of their position and the other group contests that position and has their own set of criteria for diagnosing and treating, which, based on the data, can’t be invalidated and has to be taken into account.

So here’s my take on patients who believe Lyme may be a trigger without a thorough health history. Lyme disease and co-infections are based on a very thorough clinical history.

I’m not going to go into the specifics of that clinical history, but the doctor or healthcare professional interviewing you must spend a lot of time taking a very specific history as to what symptoms you’re presenting and how you came to this diagnosis.

Just walking in with a positive lab test, whether it be US based or even Canadian based, isn’t good enough. Although with the Canadian test, if it’s positive, there’s a strong likelihood that Lyme disease is playing a role.

The Canadian test has very strict criteria for false positives and negatives, so if you have a positive test in the Canadian lab, it’s very likely that Lyme is an issue. So, I suggest that your practitioner takes a very thorough history and starts to use certain criteria to make the diagnosis.

One, is there history of a visit to an endemic area? Secondly, is there a history of tick bites?  Third, is there history of rashes? The problem is that many times, in fact most times, that history isn’t obtained. But if the history is there, that guides you in a certain direction. Those questions must be asked. Then a full list of symptoms must be taken, to try and differentiate whether your symptoms are specific to Lyme and related co-infections or whether they cross over with other conflicting or added potential causes for illness.

For instance, we know that in Lyme disease patients, after the first thirty days, the disease is characterized particularly in the later stages by migratory polyarthritis, which is joint pain or muscle pain that goes from joint to joint or muscle to muscle. These sorts of symptoms are very diagnostic. There are other things that cause this, but in the context of exposure to tick-borne illness, if those symptoms exist, you want to dig deeper.   

So migratory polyarthritis or muscle pain, those are very big symptoms for Lyme disease. Now for the co-infections, you want to ask very specific things. Do you have night sweats? Do you have day sweats? These occurrences are very specific for Babesia symptomatology. Do you have shortness of breath or “air hunger”? Do your symptoms come and go? Are there a lot of emotionally based symptoms, particularly anxiety as this has been associated with Babesia. You want to ask these very specific things.

Bartonella tends to be more peripheral so you tend to get a lot of pain syndromes such as Neuritis, which is pain in the peripheral nerves. Painful soles of the feet, particularly when you get out of bed in the morning. This is why the history is so important.

Lyme disease is now considered to be a clinical diagnosis based on history and physical examination, not based on a positive lab test. Why? Because you do get false positives and depending on which tests you run, the interpretation of results is highly complex. Unfortunately, due to cost we have the Canadian tests, which are elementary and introductory at best. 

Infectious disease specialists will say that they’re good enough, however, I disagree. When you want to look further and beyond you do have to look at more advanced testing which is, unfortunately, cost prohibitive. Most people can’t afford what’s really needed. I do try and get as many tests as I can across the spectrum of different testing types, including B-cell antibody testing, T-cell testing, PCR testing, plasma testing, and FISH testing. The more tests you can get, and the more that you correlate those tests with the clinical diagnosis in the symptom profile picture, the more you can hone in on the diagnosis of potential Lyme disease.

In Canada, Lyme disease is rising at a very alarming rate due to the migration of ticks and songbirds to the North. There was a study done showing that there are 32 million South American ticks brought north by South American birds every year. That’s a pretty alarming statistic. We know that songbirds are migrating to the North due to global warming and spreading their tick-borne load further and further North, hence the rise in tick-borne illness in Canada.

So, be cautious. Don’t jump to a diagnosis of Lyme disease because you have a positive test. Make sure that you have a very thorough history taken and make sure that the person who’s interviewing you has experience in the diagnosis and in interpreting lab data. The more lab data you have, the better.

Don’t rush ahead and treat yourself for Lyme disease without due caution. It can lead you into the wrong direction and make your immune system and your gut microbiome quite compromised if you treat inappropriately with some of the drugs out there that are available. Just a word of caution. This was covered in a podcast that you can listen to here.

Inflammatory Bowel Disease – Crohn’s Disease and Ulcerative Colitis, Part 1

Inflammatory Bowel Disease – Crohn’s Disease and Ulcerative Colitis

In anticipation of the upcoming Crohn’s and Colitis Summit, I want to share more about inflammatory bowel disease, Crohn’s disease, and ulcerative colitis. This two-part series will be a deep-dive into the root cause of inflammatory bowel disease, along with a comprehensive look at lifestyle changes and functional therapies that may provide relief. This free summit, hosted by Ravi Jandhyala and Mallika Allu of Gut Heal Protocol, will be held September 21st-27th. I will be speaking at the summit, and I encourage you to sign up if you or a loved one has Crohn’s disease or ulcerative colitis. Please note this summit has already taken place.

Inflammatory bowel disease (IBD) comprises a number of different medical conditions. The most significant of these are Crohn’s disease (CD) and ulcerative colitis (UC). These are chronic, immunologically mediated diseases with periods of relapse and remission, in addition to marked variations in mucosal inflammation from near normal in remission to severe ulceration in relapse.

UC affects only the colon with superficial inflammation, whereas CD affects the entire gastrointestinal tract and leads to transmural inflammation, strictures, fistulas, and abscess formation. 

The etiology of IBD is complex, but intricate dynamic interactions between the intestinal microbiome, host genetics, and external environmental factors all play an interrelated role in the development of IBD and its subsequent outcomes. 

The key mechanisms underlying the pathogenesis of these diseases are a genetically susceptible host exposed to external environmental factors, affecting gut microbiome and commensal flora. This results in a dysregulated immune response to different aspects of the gut microflora and increased intestinal permeability.

In this article, you will learn:

  • The etiology (root causes) of IBD, CD, and UC,
  • How the intestinal microbiome and your body’s immune response lead to IBD,
  • And the risk factors that may make you more susceptible to developing CD or UC, or having more severe flare-ups.

In Part 2, I will discuss our current strategies for diagnosing and treating CD and UC.

What causes IBD?


The health of the intestinal microbiome plays a key role in the pathogenesis of CD and UC. In particular, this is related to dysbiosis and reduced diversity of the gut microbiome. It also relates to protective bacteria subpopulations, such as Firmicutes, and an increased representation of potentially pathogenic bacteria, such as enteroinvasive Escherichia coli in subsets of ileal CD. In these conditions, species richness decreases, although some species seem to overgrow and increase in number. 

Both CD and UC are defined by an abnormal immune response, in which the immune system mistakes benign or beneficial cells and bacteria for harmful foreign substances. When this happens, the immune system, through a process known as molecular mimicry, can damage the gastrointestinal tract and produce symptoms of IBD.  UC is primarily a T-helper 2 (Th2) immune cell response, while CD is primarily T-helper 1 (Th1) cell mediated. 

Starting at birth, the cumulative effects of different environmental exposures, combined with a predetermined genetic susceptibility, is thought to cause IBD. It appears that continuous exposure to the collective effect of dynamic environmental factors, referred to as ‘exposome’ by Christopher Wild, affects the incidence of IBD.  Infancy and early childhood influence the formation of the immune system, whereas adult exposures to environmental factors alter established pathways.

Western lifestyles also seem to play a role, indicated by higher number of cases of IBD in Europe and the USA. The condition affects 1.5 million US citizens and 2.2 million people in Europe. There has been a significant increase in the last five years that’s consistent across several distinct ethnic groups and geographic locations. This increase parallels the Westernization or industrialization of an area’s lifestyle

Immigrants moving from low risk to high risk areas tend to assume the qualities of the high-risk areas within a generation or two. In their new location, the risks are much higher than in their low-risk country of origin. There has also been an increase in the number of cases in developing countries in Asia, Eastern Europe, and Northern Africa, as their lifestyles and living environments change. Onset of IBD in young adulthood is characterized by a relapsing and remitting course with frequent hospitalizations or surgery.

1. Is irritable bowel syndrome a type of IBD?

Irritable Bowel Syndrome (IBS) is considered non-inflammatory and a syndrome, or a group of symptoms, rather than a specific disease. Symptoms of IBS typically include chronic abdominal pain, diarrhea, constipation, or alternating bouts of both of these. People with IBS are also more likely to have other functional disorders such as fibromyalgia and chronic fatigue syndrome (CFS). IBS doesn’t produce the destructive inflammation found in IBD, so it may be considered a less serious condition. However, it can still cause chronic discomfort and affect quality of life. Research suggests that IBS can be caused by stress and the manner in which the brain and gut interact.

Risk factors of IBD


Well known risk factors for IBD include:

  1. Cigarette smoking: reduced risk of UC, increased risk of CD
  2. Appendectomy: reduced risk 
  3. Western diet: increased risk
  4. Stress: increased risk 
  5. Depression: increased risk 
  6. Low vitamin D levels: increased risk
  7. Estrogen replacement therapy: increased risk of UC
  8. Left-handedness: increased risk
  9. Mycobacterium paratuberculosis infection: increased risk of CD

Breast-feeding, appendectomy, and smoking, surprisingly, are all associated with reduced risk of UC. 

The effects of some of the risk factors outlined above appear to differ between CD and UC. Despite shared genetic and immunologic mechanisms, distinct pathways of pathogenesis exist.

There’s a substantial body of research that’s available regarding risk factors, but limited evidence for the treatment of these environmental triggers to modify disease outcomes or prevent relapse. There have only been a few controlled clinical trials for modification of risk factors resulting in an improvement in patient outcomes.

Risk loci, or specific gene locations within your chromosomes that appear to alter IBD risk, highlight several key pathways in pathogenesis. These include the following:

  • Innate immunity
  • Adaptive immune responses
  • Abnormal glycosaminoglycan (GAG) content of the mucosa
  • Maintenance of intestinal barrier function with increased intestinal permeability
  • Pathogen sensing 
  • Endoplasmic reticulum stress
  • Response to oxidative stress
  • Decreased oxidation of short chain fatty acids  
  • Increased inflammatory mediators 
  • Increased sulfide production
  • Decreased methylation
  1. Genetics

Everyone is born with a certain genetic susceptibility to IBD. Following exposure to a Western lifestyle, diet, and certain environmental triggers, a specific threshold is reached and IBD may develop. This explains the low concordance rate in twins, suggesting that genetic influence, while important, is only one piece of the IBD puzzle. The exposome, or the total coherent effect of all environmental factors from birth to death, plays the determining role.  

A positive family history of IBD is the most important risk factor for the development of the condition. Whole genome scans have found susceptibility genes for UC on chromosomes 1 and 4. A concordance rate of 19 percent for UC and 50 percent for CD in monozygotic twins has also been established. 

Genetics have shown 204 distinct genetic risk loci for IBD, with the majority of risk alleles being shared between both diseases. However, 37 CD-specific and 27 UC-specific loci have been identified. Known loci account for only a third of the risk for either disease. 

2. Childhood exposures

Breast-feeding appears to confer a protective effect on both UC (1.8-fold) and CD (2.2-fold), in keeping with known protective effects for other immune-mediated diseases such as eczema and asthma, allergic rhinitis, and type 1 diabetes. This is thought to be due to protective maternal antibodies and the induction of immune tolerance to specific food antigens and gut microbes.

Antibiotic exposure is associated with an increased risk of adult and pediatric-onset IBD. Exposure during infancy or early childhood is associated with the greatest increase in risk. Use of antibiotics between the ages of five and sixteen, through the effect on the microbiome, appears to increase the incidence 1.6-fold. If antibiotics are used in the first year of life, the risk of CD increases 5.3-fold. 

The strongest risk increase is linked to the use of broad-spectrum penicillin (3.1-fold), pen V (2.9-fold), then cephalosporin (1.9-fold).

It’s been hypothesized that by altering the gut microbiome composition, pathogenic bacteria colonize while the normal process of tolerance, which is crucial for immune development, is disrupted. This leads to an aberrant response of the host immune system to its microflora.

On the other hand, early childhood Helicobacter pylori infection is associated with a decreased risk of CD of 1.7-fold and UC of 1.3-fold. H. pylori increases Fox-3, the transcription factor of T-regulatory cells, which down-regulates the inflammatory response. 

3. Hygiene

A high hygiene level increases the risk of IBD. Living in an urban environment increases risk by 1.2-fold.

Having a smaller number of siblings increases risk 2.6-fold. The more siblings you have, the lower your risk for IBD.

Sharing a bedroom decreases risk of UC by 2.1-fold and CD by 2.3-fold, while a hot water tap in the home increases the risk of CD by 5-fold.

Animal contact decreases risk of UC and CD, with similar effects seen regarding asthma and eczema.

The implication is that the more hygiene measures employed, the fewer helminths (worms and parasites) you’re exposed to, and therefore less induction of dendritic cells maturation and ability to drive the T-cell immune system occurs. This results in decreased protection against autoimmunity. 

In simpler terms, “germophobes” may be at an increased risk of developing IBD.

4. Autism

There have been several reports of a link between autism spectrum disorder (ASD) and chronic gastrointestinal (GI) symptoms. Endoscopy trials have demonstrated a higher prevalence of nonspecific colitis, lymphoid hyperplasia, and focally enhanced gastritis in people with ASD compared with controls. Postulated mechanisms include aberrant immune responses to some dietary proteins, abnormal intestinal permeability, and unfavourable gut microflora. 

Wakefield et al conducted one of the earliest studies investigating gastrointestinal anomalies in autistic children in 1998. In this study, twelve children with regressive developmental disorders, nine of whom were autistic, were all reported to have abnormal colonoscopies. The most consistent finding was lymphoid nodular hyperplasia (LNH), which was present in nine of the twelve children. This mild to moderate colitis was deemed nonspecific on the basis of not fulfilling criteria for either Crohn’s disease or ulcerative colitis.

Criticism regarding the ‘normalcy’ of LNH in children prompted Wakefield, et al. to perform ileocolonoscopies in 60 children with regressive developmental disorders and compare them with 37 developmentally normal controls. In this trial, ileal LNH was present in 93 percent of affected children in comparison to 14.3 percent of controls (P<0.001). Chronic colitis was detected in 88% of affected children compared with 4.5% of controls. 

Torrente et al. compared the gastric biopsies of 25 autistic children with those of ten normal controls, ten CD patients, and ten children with H. pylori infection. Eleven of the 25 autistic children had a focally enhanced gastritis, while two had mild diffuse gastritis. Immunohistochemistry results demonstrated the pattern of lymphocyte infiltration was most similar to Crohn’s disease, with the exception of a striking predominance of CD8-positive over CD4-positive cells and a marked increase in intra-epithelial lymphocytes. Another highly specific finding among autistic children was a dense, sub-epithelial basement membrane immunoglobulin G deposition, which was absent in the other subgroups.

ASD patients and their caregivers often report improvement in the patient’s condition after following elimination diets. Improvements occur not only in the GI symptoms, but also in behavioural and cognitive problems such as hyperactivity, communication skills, and attentiveness. Interestingly, 36% of children with ASD have a history of cow’s milk and/or soy protein intolerance in infancy. In addition, while studies haven’t indicated an increased incidence of Celiac disease in these individuals, parents have often reported an improvement in their child’s behavioural disturbances when following a gluten-free diet. These benefits haven’t been seen consistently in randomized trials, although a Cochrane review did report a significant reduction in autistic traits on a gluten-free, casein-free diet.

One hypothesis is that ASD may be accompanied by aberrant innate immune responses to dietary proteins, leading to GI inflammation and aggravation of behavioural problems. One study, measuring pro-inflammatory cytokines in response to common dietary proteins, showed a greater than two standard deviations (SD) excess in tumour necrosis factor-alpha and interferon-gamma production in response to gluten and cow’s milk protein among ASD children, when compared with controls. 

A subsequent study confirmed a higher prevalence of elevated tumour necrosis factor-alpha and interleukin-12 production with beta-lactoglobin and alpha-lactoglobin, but not casein, in autistic children and children with non-allergic food hypersensitivity, compared with normal controls. 

Another theory suggests that abnormal intestinal permeability in children with ASD causes them to absorb fragments of incompletely broken-down peptides such as gluten or casein, which cross the blood-brain barrier and act as endogenous opioids. 

The gut microflora has also been targeted as a potential player. There have been anecdotal reports of the onset of autism following broad-spectrum antibiotics, suggesting that disruption of the indigenous flora may lead to colonization by neurotoxin-producing bacteria. Autistic children have been shown to have higher counts and more species of Clostridia than controls matched by age or gender. A small prospective trial demonstrated a significant but transient improvement in autistic features following a course of vancomycin (antibiotic) therapy, with relapses presumed to occur because of persistent spores that proliferate upon discontinuing the medication.

5. Yeast

The ratios of yeasts in the gut, such as Saccharomyces cerevisiae and Candida albicans, may be significantly altered by IBD. Normally, yeasts and fungi account for less than 0.1% of the total microbiota population. However, there is often a decreased population of S. cerevisiae and increased populations of C. albicans and other Candida yeasts in the guts of people with IBD.

Antibiotic use can result in fungal overgrowth, especially of the Candida yeasts, which may then compete with the bacteria in the gut for survival and growth. This fungal overgrowth can make the host more susceptible to mold illness, paving the way for an immune response that may invoke chronic inflammation, autoimmunity, or IBD.

It appears also that certain components of the cell walls of fungi can trigger immune responses, which may add to the overall exposomeXI.

6. Gut microbiome

Recent studies have highlighted the association between the gut microbiome and the pathogenesis of IBD. 

Reduced biodiversity of the gut microbiome is apparent even at the onset of diagnosis, before treatment is initiated. CD, especially ileal CD, has been associated with increased frequency of pathogenic bacteria such as enteroinvasive E. coli. There can also be a reduction in the frequency of anti-inflammatory bacterial subgroups, particularly Faecalibacterium prausnitzii. Giving strains of this specific bacteria has resulted in improved outcomes and amelioration of colitis in animal models.

By the time someone reaches adulthood, the immune system has matured and lifestyle factors become more apparent as choices are increased. Adult exposures seem to be involved in changing the already developed immune system. Several environmental factors have been identified as playing a role in IBD development independent of stage of life, previous development of acute bacterial gastroenteritis, geographical location, and vitamin D. 

Bacterial gastroenteritis as a result of Clostridium difficile, Campylobacter, and/or Salmonella infections can increase risk of IBD. The risk of developing IBD increases significantly after bacterial gastroenteritis, especially within the first year. The largest effect is seen with CD, for which there is a 2.9-fold increase, rather than the 2.1-fold for UC. This may be explained by the increase in interleukin-6 (IL6), blockage of T-reg cells, and the activation of self-reactive T-cells, leading to a chronic inflammatory response.

7. Mycobacterium avium infection

M. avium subspecies paratuberculosis (MAP) infection rates are higher in CD, although a causative link hasn’t been established. Meta-analysis has shown a 7-fold increase in CD in MAP infections, but the timing of this infection couldn’t be ascertained to be a cause of CD and is perhaps merely a bystander. 

8. Tap water

Drinking tap water lowers the risk of CD 2-fold. It’s been proposed that this might be due to harmless microorganisms triggering regulatory T-cells.  

9. Flying

Individuals have an increased risk of disease flare following high-altitude flights or after travelling more than 2,000 metres above sea level. Mild hypoxia leads to an increase in IL6 and C-reactive protein (CRP), which are markers of inflammation.

10. Obesity

An American cohort study showed a 2.5-fold increase in CD in obese women with a body mass index (BMI) greater than 30 kg/m2. 

11. Smoking 

Smoking confers a 2-fold increase in risk of CD, which is somewhat lessened when stopping smoking, although the pathogenic mechanism remains unknown. 

Smoking is associated with a more aggressive form of CD, more surgery, and an earlier risk of recurrence and re-operation following a bowel resection. Stopping smoking prior to the diagnosis can result in a reduced likelihood of progressing to complicated disease behaviour or the need for surgery. Smoking cessation is also associated with a reduced rate of relapse regarding CD.

With UC, current but not former smokers appear to have some protection, with half the risk of UC in current smokers compared to individuals that have never smoked. Smoking confers a 1.7-fold reduction in risk for UC. 

For former smokers, the risk for both UC and for CD increases by the same amount.

For patients with UC, smoking leads to a more benign disease course with fewer flares, a reduced need for steroids, and lower colectomy rates. Smoking cessation increases the risk, with the effect lasting for up to ten years after quitting smoking. This suggests that smoking only defers the development of UC. Quitting smoking is also associated with flare-ups.

Passive, or second-hand, smoking has a weaker beneficial effect. The mechanism of this different effect between CD and UC is unknown, but is thought to be influenced by the constituents of cigarette smoke having different effects on oxidative stress in mononuclear cells.

Smoking is known to affect the immune system through both cellular and humeral pathways by transforming the synthesis of pro-inflammatory cytokines, altering gut permeability, reducing smooth muscle tone and contractility due to nitrous oxide, and effecting changes in the gut microflora. 

There’s also an interaction between smoking and genetic variants in the CYP2A6/EGLN 2 locus and glutathione transferase enzymes (GSTP1) and risk of CD and UC. Snips in these genes showed significantly different outcomes. 

12. Appendectomy

There are divergent effects between UC and CD following appendectomy.

When performed before the age of twenty, there’s an increased risk of UC with no effect or only a slightly increased risk of CD. The mechanisms remain unclear, and appendectomy may result in intestinal microbiome alteration with a protective effect on UC. The microbiome composition in the appendix also appears to confer protective effects against UC

13. Diet 

The role of diet has been problematic to determine. This is due to difficulty in tracking it through the course of a lifetime, different recall between controls and cases, and potential restrictions on diet choices pre-diagnosis based on the nature of the disease. 

Increased fibre of approximately 24 grams was associated with a significant reduction in risk of CD but not UC.   This was related to fruit fibre and not that of vegetables, including cruciferous ones. No association was found between fibre from cereals, whole grains, or legumes. 

Fibre may confer epithelial integrity and reduce translocation of potentially pathogenic bacteria such as enterovirus E. Coli, which may play a role in CD. Fibre activates the aryl hydrocarbon receptor (AhR) expressed in intestinal lymphocytes, which offers protection against environmental antigens.  

A diet high in long-chain n-3 polyunsaturated fatty acids (PUFA) was associated with a reduced risk of UC. CD had no modifiable fat intake risk factors for CD. One large study found omega-3 supplements had no beneficial effects, while a high intake of animal protein revealed a potential association with IBD. Sugar and a high-carbohydrate diet are associated with an increased risk of IBD, while fruits and vegetables seem to have a protective effect.

Alteration of diet can trigger flares in many different types of disease. High fat diets result in expansion of specific bacterial subpopulations that are associated with a pro-inflammatory response, particularly diets high in meats, as well as polyunsaturated omega-6 fats (like those found in industrial seed oils such as soybean oil, corn oil, and canola oil).XVI Elemental diets show improved outcomes in CD, whereas partial and complete enteral nutrition show effects superior to placebo but lower than steroids. 

Elimination diets, such as the specific carbohydrate diet, lectin-free diet, autoimmune paleo, and Whole30, are of particular interest as well, but there is still a lack of strong evidence regarding their efficacy for IBD treatment.

Childhood diet and antibiotic exposure is an important determinant of microbiome composition. Breastfeeding appears to reduce UC risk, but it doesn’t appear that formula-feeding necessarily increases UC risk. Researchers have found that the gut microbiome of both breastfed and formula-fed children changes significantly after the introduction of foods. Therefore, the first foods a child receives (other than breastmilk or formula), and the foods they eat throughout their early childhood, may profoundly affect their gut microbiota composition and affect their IBD risk level.

14. Glyphosate

Glyphosate is the world’s most widely produced herbicide. It’s the primary toxic chemical in Roundup™ and many other herbicides. As a broad-spectrum herbicide, glyphosate is present in more than 700 different products and used in industries such as agriculture and forestry, and even in the home. 

Glyphosate was introduced in the 1970s to kill weeds by targeting the enzymes that produce the amino acids tyrosine, tryptophan, and phenylalanine. However, the enzymes of many bacteria are susceptible to inhibition by this chemical, so it can also alter the gut flora of many animals. 

Usage of glyphosate significantly increased after the introduction of genetically modified (GMO), glyphosate-resistant crops that grow well despite the presence of this chemical in the soil. In addition, the toxicity of the surfactant polyoxyethyleneamine (POEA), which is commonly mixed with glyphosate, is greater than the toxicity of glyphosate alone. 

In addition, Enlist Duo™, a herbicide product containing a 2,4-dichlorophenoxyacetic acid (2,4-D) salt and glyphosate, was approved for use in Canada and the United States in 2014. This was for use on GMO soybeans and maize, both of which were designed to be resistant to both 2,4-D and glyphosate. 2,4-D has many toxic effects of its own. 

Research has shown that glyphosate disrupts the microbiome in the intestine, causing a decrease in the ratio of beneficial to harmful bacteria. Highly pathogenic bacteria such as Salmonella entritidis, Salmonella gallinarum, Salmonella typhimurium, Clostridium perfringens, and Clostridium botulinum are highly resistant to glyphosate. Unfortunately, however, most beneficial bacteria such as Enterococcus faecalis, Enterococcus faecium, Bacillus badius, Bifidobacterium adolescentis, and Lactobacillus ssp. were found to be moderately to highly susceptible. 

The relationship between the microbiome of the intestine and overall human health is still unclear.

 However, current research indicates that disruption of the microbiome could lead to conditions such as metabolic disorder, diabetes, depression, autism, cardiovascular disease, and autoimmune diseases such as IBD. 

15. Celiac disease, IBD, and the glyphosate connection

Researchers have found that people with Celiac disease are about 10 times as likely as a control group to have IBD. Conversely, the prevalence of Celiac disease in IBD appears to be comparable with that indicated in controls.

Celiac disease, and more generally, gluten intolerance, is a growing problem worldwide. It’s particularly serious in North America and Europe, where an estimated 5% of the population now suffers from this condition. It’s a multi-factorial disease associated with numerous nutritional deficiencies, as well as reproductive issues and an increased risk of thyroid disease, kidney failure, and cancer. 

It has been proposed by researchers Samsel and Seneff that glyphosate is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of Celiac disease. The condition is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on these particular types of bacteria. 

Characteristics of celiac disease point to impairment in many cytochrome P450 (CYP450) enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit CYP450 enzymes. 

Deficiencies in iron, cobalt, molybdenum, copper, and other rare metals associated with Celiac disease can also be attributed to glyphosate’s strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine, and selenomethionine associated with Celiac disease also match glyphosate’s known depletion of these amino acids. 

Celiac disease patients have an increased risk of developing non-Hodgkin’s lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with Celiac disease, such as infertility, miscarriages, and birth defects, can similarly be linked to glyphosate. 

Glyphosate residues in wheat and other crops have been increasing recently due to the growing practice of crop desiccation just prior to the harvest. The practice of ‘ripening’ sugar cane with glyphosate may also explain the recent surge in cases of kidney failure among agricultural workers in Central America. 

16. Mast Cell Activation Syndrome (MCAS)

As early as 1980, Dvorak and colleagues reported that mast cells were markedly increased in the ileum of patients with CD. In 1990, Nolte et al. showed the same findings in patients with UC. There were increased numbers of mast cells with associated degranulation products of histamine and tryptase, along with associated increases in cytokines and leukotrienes IL-16. TNF-alpha and substance P have also been found in the mucosa of patients with IBD, particularly when stained with the CD 117 stain. 

According to the latest literature research conducted by Dr. Lawrence Afrin, one of the key researchers in MCAS, mast cells release at least 1,000 mediators of inflammation. This includes, but isn’t limited, to histamine, proteoglycans (heparin and chondroitin sulfate), proteases (tryptase, chymase and carboxypeptidase), eicosanoids, and platelet activating factor (PAF).

Activation of mast cells leads to the release of the eicosanoid arachidonic acid from the phospholipids on the cell membrane. This 20-carbon fatty acid is then rapidly oxidised, along either the cyclooxygenase pathway to form prostaglandin D2 (PGD2) or the lipoxygenase pathway to form leukotriene C4 (LTC4). Histamine triggers the histamine H1 receptor and tryptase, the protease-activated receptor 2 (PAR2).

Therapies aimed at down-regulation of mast cell activity may be important in the treatment of IBD. 

Mast cell cytokines constitute a third category in that they may be both preformed and newly synthesized. These include IL-4, IL-5, IL-6 and TNF-alpha in the nasal mucosa and bronchi, as well as IL-1B, IL-3, IL-8, IL-9, IL-10, IL-13, IL-16, IL-18, IL-25, granulocyte -macrophage colony stimulating factor (GM-CSF), and stem cell factor macrophage chemotactic peptide (MCP)-1, MCP-3, and MCP-4. 

Many factors are known to activate mast cells, and their activation is a crucial step involving pathophysiological changes. These factors include antigens, anti-IgE, substance P, VIP, C5a, C3a, somatostatin, morphine, very low-density lipoprotein, stem cell factor, tryptase, and eosinophil cationic protein, all of which are known to activate mast cells. 

It should be noted that mechanisms of mast cell activation differ with different classes of triggers.

17. Nutrient deficiencies 

UC patients were found to have lower levels of vitamin A, vitamin E, and carotenoids than those in  controls. This implies that certain nutrient deficiencies may either play a role in the development of UC, or, conversely, are a complication of UC. 

18. Vitamin D

Vitamin D intake is inversely associated with UC risk, meaning that higher vitamin D intake is linked to a lower UC risk.  Additionally, higher blood levels of vitamin D are associated with reduced risk of CD.

 Patients who increased their blood vitamin D levels had a 1.9-fold protective effect for CD, but not for UC. They also had a lower risk of surgery compared to those who remained vitamin D deficient. Low vitamin D levels are also associated with a higher rate of colon cancer and C. difficile infections.

Vitamin D administration may reduce the risk of IBD relapses. Vitamin D is also known to play a role in the regulation of the innate immune system by activating the TH1 lymphocytes and monocytes. This causes the inflammatory response to be down-regulated. 

19. Weather and latitude

Incidence of IBD is higher in northern latitudes where people have reduced exposure to ultraviolet (UV) light. The Women’s Health Initiative (WHI) study noted a lower risk for both UC and CD in women in southern latitudes (1.6-fold for UC) compared to those at higher latitudes. Living in southern latitudes appears to be protective, likely due to increased UV light and subsequently higher vitamin D levels.

Warm summers have a protective effect for UC and possibly for CD as well. This is also the case for other inflammatory diseases such as multiple sclerosis (MS), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE). This is thought to be due to an increase in microbial diversity, which in turn confers benefit.

20. Psychological behaviours

IBD has long been associated with neuroticism, dependency, anxiety, and perfectionism. Recent well-designed studies have confirmed that adverse life events, chronic stress, and depression increase the likelihood of relapse in patients with quiescent (dormant) IBD.

The evolving science of psychoneuroimmunology has outlined the mechanisms by which the nervous system can affect immune function at both the systemic and gut mucosal levels. These mechanisms are thought to be due to changes in the hypothalamic-pituitary-adrenal (HPA) axis and alterations in the bacterial mucosal barrier. These occur via mucosal mast cells and mediators, such as corticotrophin releasing factor (CRF). 

To maintain homeostasis, a living organism must constantly adapt at a mental, emotional, molecular, cellular, physiological, and environmental level. Stress is defined as a threat to an organism’s homeostasis. The function of the stress response is to maintain homeostasis through behavioural and biological or physiological adaptations. The stress response involves the complex integration between a series of interconnected regions within the brain. These are the hypothalamus, the amygdala, and the hippocampus. This hub receives inputs from viscera and somatic afferents and from higher cortical structures, including the internal dialogue and mental perceptions of the patient. This in turn, affects the neuroendocrine stress response via two interconnected effector pathways, namely the HPA axis and the autonomic nervous system (ANS).  

Stress stimulates the release of CRF from the hypothalamus, causing the release of adrenocorticotrophic hormone (ACTH) from the anterior pituitary. This in turn causes the release of cortisol from the adrenal cortex. Stress also activates the descending neural pathways from the hypothalamus to pontomedullary nuclei, which control the autonomic nervous system response. Stimulation of the sympathetic nervous system (fight/flight) causes the release of adrenaline and noradrenaline from the adrenal medulla. This is in addition to supplying the entire gut directly. The parasympathetic vagus nerve and sacral nerves provide parasympathetic input to the upper gut and to the distal colon and rectum. 

The gut has its own nervous supply called the enteric nervous system (ENS), which is innervated by both sympathetic and parasympathetic fibres. This network has been termed the gut-brain axis. The ENS contains 100 million neurons and regulates the motility, the exocrine and endocrine functions, and the microcirculation of the gut. These axes (HPA, ANS, ENS) can then interact directly with the immune system. Psychoneuroimmunology is the study of how behavioural factors and CNS function can influence the immune system, and hence inflammation, at both systemic and local tissue levels.

Nerve fibres of the ANS form close effector junctions with lymphocytes and macrophages in lymph glands, bone marrow, the thymus, the spleen, and mucosa associated lymph tissue. These nerve fibres also release a number of chemicals called neurotransmitters, such as catecholamines, vasoactive intestinal peptides, angiotensin II, neurotensin, somatostatin, and substance P. These are capable of affecting lymphocytes, macrophages, neutrophils, and other inflammatory cells at the neuro-immune cell junction. Lymphocytes and other inflammatory cells also carry receptors for the hormones and neuropeptides of the HPA axis, such as growth hormone, ACTH, corticosteroids, and CRF. 

At high concentrations, cortisol has an immunosuppressive effect, increasing the release of anti-inflammatory proteins and IL-10. Transcription of inflammatory signalling molecules such as IL-6, IL-1, and TNF-α are reduced through transcription factors AP-1 and nuclear factor kappa beta. At lower doses, cortisol has an immune stimulating effect.

Similarly, adrenaline and noradrenaline have mixed effects at different doses on immunity and inflammation. Adrenaline causes an increase in serum IL-6, an increase in lipopolysaccharide (LPS) induced IL-8 and IL-10, and an increase in cytotoxic (cell-killing) T-cells and natural killer (NK) cells.

Chronic sustained stress due to adverse life events, such as bereavement, divorce, and depression, have been shown to reduce the numbers of cluster of differentiation 8 (CD8, a glycoprotein) lymphocytes, NK cells, and macrophages in the blood. However, in addition to immunosuppression, chronic stress with reduced heart rate variability, which is a sign of increased sympathetic tone, has been shown to increase inflammation, showing raised CRP.  

Acute stress causes stimulation of the sympathetic nervous system with a rise in adrenaline and noradrenaline, followed a little later by a rise in cortisol. This leads to an acute episode of immune enhancement with an increase in inflammatory cytokines that are known to be associated with flares of IBD. This includes a rise in cytotoxic CD8 T lymphocytes and NK cells and an increase in their cytolytic activity, in addition to platelet activation and thrombin generation, producing effects of microcirculation ischemia causing thrombosis and microinfarction. This effect is lowered with beta blockers rather than aspirin, suggesting that a stress response or sympathetic activation is at the root of it. 

Psycho-social stressors have long been associated with triggers. Recent and remote stress is associated with an increased incidence of IBD, with recent stress being more significant. When questioned, patients indicated that stress was the trigger for 70% of their flares. Depression feelings were associated with a 2.4-fold increased risk of CD, but not UC. Depression, anxiety, and stress are also associated with increased rates of relapse and surgery for IBD.

The inflammatory response to stress through elevation of IL-6 levels can be changed in mice by administrating antibiotics, suggesting antibiotics exerts their effects through changes in the gut microbiota.

Using medications to treat these conditions appears to have variable effects. People referred for therapy following increased stress due to the diagnosis have reduced rates of relapse, outpatient attendance, and use of steroids or other medications for IBD. 

In summary, stress can play a significant role in immune system dysfunction leading to an inflammatory response, which may trigger new-onset IBD or a flare of existing disease.

21. Sleep

Both increased and reduced amounts of sleep have been associated with negative health outcomes. Reduced sleep quality was associated with an increased risk of relapse at six months post-remission in CD, supporting an association between poor sleep and gut inflammation. Sleep disturbances in IBD may lead to a 2-fold increase of disease flare. Sleep deprivation also leads to activation of the immune cascade.

22. Nonsteroidal anti-inflammatory drugs

The use of nonsteroidal anti-inflammatory drugs (NSAIDS) for fifteen days per month increases the risk of UC 1.9-fold and CD 1.6-fold. These figures are increased by greater weekly dosage, and a higher frequency or longer duration of use. NSAIDS lead to inhibition of cyclooxygenase (COX), resulting in a decrease in protective prostaglandins in the gut mucosa, increasing gut permeability. 

23. Oral contraceptives

Current use of oral contraceptives (OCP) leads to 1.3-fold increased risk of UC. The risk of developing CD with current use of OCP is increased by 1.5-fold. 

24. Post -menopausal HRT

Post menopausal HRT increases the risk of UC by 1.7-fold, but not CD. It’s been proposed that estrogen modulates gut inflammation by acting on estrogen receptors that are found on gastrointestinal epithelial and immune cells. 

UC is a Th2 mediated illness, and estrogen promotes Th2 cytokines. The same holds true for other Th2 mediated diseases, such as RA and SLE. However, this is not the case with CD, which is a Th1 mediated illness. 

A prospective cohort study (the Women’s Health Study) followed 108,844 postmenopausal American women, with a median age of 54, without a prior history of CD or UC in 1976. The risk of UC appeared to increase with longer duration of hormone use and decrease depending on the time since discontinuation. There was no difference in risk according to the type of hormone therapy used, such as estrogen as opposed to estrogen and progestin. No association was noted between the current use of hormones and the risk of CD. The effect of hormones on the risk of UC and CD was also not modified by age, BMI, or smoking.

25. Ambient air pollution

On the whole, air pollution exposure wasn’t associated with the incidence of IBD. However, residential exposure to sulfur dioxide and nitrous dioxide gases found in industrialized regions may increase the risk of early-onset UC and CD respectively. 

Living in regions with high sulfur dioxide emissions before the age of 25 increases the chances of UC 2-fold. A high nitrogen dioxide exposure before the age of 23 increases the chance of CD 2.3-fold. Total pollutant emissions correlate significantly with an increased risk of hospitalization in established IBD. Pollutants may also be absorbed and incite the inflammatory process that’s characteristic of IBD.

26. Physical activity

Researchers have found that women engaging in active physical activity have a 44% reduction in CD risk compared with sedentary women. Physical activity was not associated with risk of UC.

The absolute risk of UC and CD among women in the highest fifth of physical activity levels was at just 8 and 6 events per 100,000 person years. This compares to 11 and 16 events per 100,000 person years among women in the lowest fifth of physical activity. 

Age, smoking, BMI, and cohort didn’t significantly modify the association between physical activity and the risk of UC or CD in these findings. The pathway appears to be mediated through the autophagy (clearing out or recycling of damaged cells) pathway or cell senescence (cell aging).

Summary

There’s a rich body of research showing potential environmental risk factors for the development of IBD. However, there aren’t many high-quality studies showing that environmental changes may have a large effect on disease outcomes. For a large number of possible environmental factors, meta-analyses are not yet available.

Many novel factors are identified by large cohort or case-control studies, but are yet to be reproduced by and validated by independent research groups. Consequently, the level of evidence is somewhat low and caution should be exercised when drawing firm conclusions or making recommendations.

However, individuals with a genetic susceptibility can be cognisant of environmental factors and do their best to lower or delay their genetic expression, as their exposure threshold may not be reached. Being aware of which environmental factors are involved in developmental phases as well as along the course of the disease to increase flares and development of complications, gives the treating physician and patient as advocate the opportunity to make the necessary adjustments along the patient’s timeline.

 This has the effect of lowering the risk of disease expression with a more personalized treatment plan.

In Part 2, I will be reviewing the lab tests that are used to diagnose CD and UC, along with lifestyle changes and treatment options that are often successfully employed in IBD care.

In the meantime, I encourage you to contact my office if you are seeking functional and integrative care for your IBD. 

Diagnosis of Mast Cell Activation Syndrome – A Global Consensus 2

Diagnosis of Mast Cell Activation Syndrome - A Global Consensus

Please take a look at this newly published peer-reviewed article by Dr. Lawrence Afrin of which I was a co-author, on the revised criteria for the diagnosis of mast cell activation syndrome (MCAS):

Diagnosis of mast cell activation syndrome: a global “consensus-2”

One of the most common difficulties patients seem to face after they have been to our clinic and given a diagnosis of mast cell activation syndrome is when they return to their GP’s or specialists with a description of this syndrome. Traditional medicine is well-schooled in the diagnosis of systemic mastocytosis, a condition characterized by an increased number of mast cells as opposed to MCAS which is a diagnosis arrived at due to the increased activity of mast cells (and not an increase in the actual numbers).

Systemic mastocytosis is most often diagnosed by using a biomarker called tryptase, whereas the diagnosis of MCAS has much broader diagnostic criteria as this article will outline.

For a much more in-depth description of MCAS, please see my treatment page and the following articles:

  1. Treating Mast Cell Activation Syndrome (MCAS)
  2. Mast Cell Activation Syndrome: When You Immune System Runs Rampant
  3. Natural Treatments For Mast Cell Activation Syndrome
  4. Your Ultimate Guide to the Low-Histamine Diet

COVID-19 Testing: What You Need To Know

As I learn more about COVID-19 and share that information with you, my community, I’m increasingly asked about testing. Time is moving on and it’s clear that one of the limitations regarding the management of this global pandemic has been testing, or more specifically the lack of testing. There are still so many questions about how widespread SARS-CoV-2 (the virus that causes COVID-19 disease) is here in Alberta, Canada, and across the globe. We know that many people carry and spread the virus without showing any symptoms or just display very mild ones, but how many people are we talking about? 

As we enter the next phase of pandemic management, as people begin to enter communities again, testing will play a key role.1 It’s incredibly important to know who’s been exposed as well as who hasn’t and therefore may still be at risk. More widespread testing will help to keep those most vulnerable, including those with pre-existing conditions safe. 

While there’s undoubtedly still a lot to learn, in this article I’ll distill for you what I know and believe, as of now. I’ll cover:

  • Some background on testing, including understanding the timeline of COVID-19 infections
  • Types of testing, including viral RNA and antibody 
  • What test results mean
  • Test accuracy
  • Next steps for testing

Background on testing: The viral timeline 

To understand testing it’s helpful to understand the timeline of COVID-19 infection. This image was compiled by the Institute for Functional Medicine and provides a helpful visual.2 It’s important to note that this timeline is based on the data that has been collected so far, and some of it hasn’t been peer-reviewed and published yet. 

As you can see, the first thing that can be detected after exposure and with the onset of symptoms is the virus itself. This is depicted by the red and purple lines in the graph. 

After the initial infection, the body begins to mount an immune response and develop antibodies. This is depicted by the orange, blue, and green lines. 

Most of the testing that’s been done so far, mainly in hospitals, has been conducted when people are symptomatic. It’s also important to note that the time between when someone’s exposed to the virus and when they begin showing symptoms is widely variable. Some will show symptoms two days later and others may not show symptoms for three weeks. Others will show no symptoms at all, or only mild ones, yet still be spreading the virus during the first couple weeks of infection.

Time Course for testing after Exposure to SARS-CoV-2
Source:  https://p.widencdn.net/n3trkt/IFM_Sars_Graph_v3

Types of testing

There are two main types of testing, namely viral and antibody. Both have their place in the timeline of events. 

The Viral RNA tests look for an active viral infection. They test for the presence of RNA (ribonucleic acid) from SARS-CoV-2. The test will be positive for someone with a current or very recent infection.3 This test can be undertaken using several methods of collection.

  • Nasopharyngeal swab – This goes into the nose about three or four inches. 
  • Oropharyngeal swab – This down the throat and is similar to a test for strep throat. 
  • Sputum – This is the thick mucus produced by the lungs during an infection. If this can be collected from a person’s coughing, it can be tested. 
  • Saliva – Saliva collection for this test works best after a cough.
  • Stool – Viral RNA can be detected in the stool after an infection.4

A positive test result doesn’t necessarily mean that you’re contagious and are ‘shedding’ the virus. In order to verify that, we’d need to culture your sample in a laboratory. However, there are issues with safety and containing the virus in a laboratory setting, so this type of testing is mostly only done in a research environment at the moment. 

Therefore, we’ll assume that a positive test means you’re contagious and that you need to quarantine for two weeks in order to protect others. It also means that you should watch for symptoms and seek medical care if needed. You can read about treatment options, including herbs and nutrients, here. Tracking positive testing is also important from a public health perspective, in order to trace the spread of the virus.  

Viral RNA testing is going to be most accurate around four to six days after symptoms appear, since this is the peak of the viral RNA production.4 If you wait too long to be tested, you might get a negative Viral RNA test, even though you were infected. This is why this testing has a high false negative rate. You need to get the timing right. If you have a negative test, but a known exposure, you’ll still need to take precautions and may need to be tested again. 

The second type of test that’s helpful is an antibody test. This is a blood test that studies your immune response to the viral exposure. Essentially, it’s looking to determine if you were exposed to SARS-CoV-2 in the past and may be particularly helpful for mild or asymptomatic cases.5 The best time to take the test is about seven days after symptoms resolve or a minimum of fifteen to twenty-one days after exposure. 

There are two main antibodies that current testing is looking at.

  • IgM – This non-specific antibody is produced as the immune system is figuring out exactly what it’s dealing with. If you look at the chart above, you’ll see that IgM rises and then fades away as more specific antibodies (IgG) are produced. 
  • IgG – This more specific antibody takes a little time to develop and then stays high for a period of time.6

This pattern that we’re seeing with SARS-CoV-2 antibodies is typical of what we see with other viruses. 

A positive test suggests that you’ve been infected and that your body mounted an immune response to the infection, whether you had severe symptoms, mild ones, or no symptoms at all. Timing matters here as well. If you test IgG antibodies too early, you might miss them because they take some time, possibly around three weeks, to develop. False positive tests are also possible as some of the tests are detecting previous exposures to other coronaviruses, such as the ones that cause the common cold.4

A negative test might mean that you still need to take precautions to prevent exposure, especially if you’re at higher risk for severe COVID-19. Because of the timeline, it’s important to note that a negative antibody test does not rule out current infection. 

As you can see, the testing is quite nuanced, which is why connecting with your healthcare team for guidance is so important. 

Understanding test accuracy

Naturally, we want a test to be accurate, to be both sensitive and specific. This will limit false positive and false negative results. 

When it comes to accuracy, sensitivity refers to how likely a test is to pick up a positive result in those that have definitely been infected, known as true positives. It’s those that have been exposed to the virus that test positive. Specificity refers to individuals that haven’t been infected by the virus that test negative, which are referred to as true negatives.7. In a perfect world we always want a test to be 100 percent sensitive and 100 percent specific, but this isn’t the case when it comes to coronavirus testing. It can also be similar for many other antibody tests. The poor test results for Lyme disease detection are a good example of this.

We’ve already seen that there are cases of false positives and negatives based on timing and other factors. For example, with a viral RNA test, the nose swab can be really unpleasant so it’s possible that an error can occur as a result of not going deep enough to collect the appropriate sample. Alternatively, there might be low sensitivity because the test picks up antibodies to another coronavirus that are connected to a previous coronavirus infection.4

You might also hear the terms positive predictive value (PPV) and negative predictive value (NPV) in discussion regarding test accuracy. These take into account sensitivity and specificity in terms of the infection rates in a specific population.7 Of course, we need more testing to determine what rates are in each area. This article in Scientific American provides a useful guideline to the testing.

If I have the antibodies, am I immune? 

A conservative answer to this question is that we don’t know for sure. Because this virus is new, we don’t know if everyone that’s exposed develops antibodies, if those antibodies truly mean immunity, and if so for how long.4

However, it’s likely that this virus acts like other viruses that we know more about. For example, for a coronavirus that causes a common cold, you get the cold, develop antibodies, and those antibodies protect you for a while. For something more severe than a cold, such as chicken pox, you can develop immunity for a lifetime. 

You may have heard stories of those that tested positive, negative, and then tested positive again sometime later. However, this is more likely to be an issue with testing methods and timing more than a case of the immune system not creating immunity.  

That being said, I do think that having positive antibodies will be a tool that’s used to help open society up and allow individuals to return to daily life with more confidence.  

Should I get tested?

While I do think that widespread testing is important for both the individual and society, the availability of testing is still quite limited. 

There are many laboratories working to address the issues of access. These include functional testing laboratories, that are frequently used by myself and my colleagues, which are now coming to the market with tests. I have some colleagues that prefer one test over another and others that are waiting for the testing to become more accurate before widely applying it to their patient population. Another factor is that testing through private laboratories is quite expensive. At some point the cost will come down and testing will become more widely available. 

In Canada, we only have access to the provincial laboratory services, whereby they’ll perform PCR testing and antibody testing provided the correct criteria are met. If a private test is requested, we’re able to use certain US-based laboratories. Diagnostic Solutions Laboratory ships their COVID test kits to Canada. They have three test options, which are nasal swab, antibody and stool. 

A German laboratory called Euroimmun AG introduced a test with 100 percent specificity, thus eliminating the chance of a false positive. It’s been approved in the USA. A full list of all the tests approved for diagnostic purposes in all countries is included here at the Center for Health Security website. The Mayo Clinic has also launched an antibody assay with a specificity of 99.3 percent when tested against normal serum. Approximately three percent of serum is IgG positive less than seven days post-symptom onset, 35 percent are IgG positive in samples collected between eight and fourteen days after symptom onset, and 100 percent are IgG positive after fourteen days of symptom onset.

We’ve learned a lot so far about SARS-CoV-2 and COVID-19, but still have plenty that we need to understand. I’ll be keeping a pulse on the new research as it becomes available and will continue these important discussions with my colleagues in order to keep you updated regarding the very latest information. My understanding of this virus is that it’s evolving day by day and although testing is relatively new, it’s still extremely important. 

As we navigate this next wave of outbreak management, testing will be key in order to understand who has active infections, who’s already been exposed, and who may still be at risk. Testing will help us to understand how the virus is spreading, answer important questions about immunity, and ultimately to save lives. My sense is that until the antibody testing can approach a specificity that’s close to 100 percent, it may be worthwhile to wait it out.  

Please don’t hesitate to reach out for support as needed. My team and I are always here for you during this challenging time. 

References: 

  1. Patel R, Babady E, Theel ES, et al. Report from the American Society for Microbiology COVID-19 International Summit, 23 March 2020: Value of Diagnostic Testing for SARS-CoV-2/COVID-19. mBio. 2020;11(2):e00722-20. Published 2020 Mar 26. Full text: https://mbio.asm.org/content/11/2/e00722-20 
  2. The Institute for Functional Medicine. The Functional Medicine Approach to COVID-19: Primer on SARS-CoV-2 Testing. https://www.ifm.org/news-insights/functional-medicine-approach-covid-19-primer-sars-cov-2-testing/ 
  3. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019 [published online ahead of print, 2020 Apr 1]. Nature. 2020;10.1038/s41586-020-2196-x. Abstract: https://pubmed.ncbi.nlm.nih.gov/32235945
  4. The Institute for Functional Medicine. The Functional Medicine Approach to COVID-19: Primer on SARS-CoV-2 Testing Webinar. Hosted by Dr. Patrick Hanaway with Dr. Helen Messier. April 28, 2020. 
  5. Guo L, Ren L, Yang S, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19) [published online ahead of print, 2020 Mar 21]. Clin Infect Dis. 2020;ciaa310. Full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184472/ 
  6. He-wei Jiang, Yang Li, Hai-nan Zhang, Wei Wang, Dong Men, Xiao Yang, Huan Qi, Jie Zhou, Sheng-ce Tao. Global profiling of SARS-CoV-2 specific IgG/ IgM responses of convalescents using a proteome microarray. Preprint article: https://www.medrxiv.org/content/10.1101/2020.03.20.20039495v1 
  7. Abdul Ghaaliq Lalkhen, MB ChB FRCA, Anthony McCluskey, BSc MB ChB FRCA, Clinical tests: sensitivity and specificity, Continuing Education in Anaesthesia Critical Care & Pain, Volume 8, Issue 6, December 2008, Pages 221–223, Full text: https://academic.oup.com/bjaed/article/8/6/221/406440 

Lecture: 11th Annual CHNC, Mild Cognitive Impairment

Since 2000, deaths from heart disease have decreased by 14%, while deaths from Alzheimer’s disease have increased by 89%. Alzheimer’s disease is the third-leading cause of death in the USA. There is a major distinction between just memory loss and a wider range of cognitive abilities and decline.

In this lecture, Dr. Hoffman discusses how to differentiate between mild symptoms of cognitive decline versus those of advancing Alzheimer’s dementia. Only 5% of all incidents of Alzheimer’s disease are considered genetic in origin; the rest are caused by lifestyle factors over which we can exert significant control.

Dr. Hoffman also talks about the different subtypes of Alzheimer’s disease, many of the 150 potential risk factors for their development and the lifestyle, nutritional, hormonal and medication interventions that can make a marked difference in patient outcomes.

Mild Cognitive Impairment 11th Annual CHNC Part 1

Dr Bruce Hoffman

Mild Cognitive Impairment 11th Annual CHNC Part 2

Dr Bruce Hoffman

Transcript

Dr. Bruce Hoffman:

And so, I look at the broader model, the seven levels of healing, I look upstream, I look at the family system. Epigenetically, you don’t escape the fate of your forefathers. Whatever fate your forefathers went through, you don’t escape it, you epigenetically manifest their experiences and if they have unresolved experiences, traumas, murders, deaths, you do not escape the effects. It has been studied extensively, many studies now, mainstream research, this is not esoteric research, with children that have been born since the world trade centres went down- higher incidence of PTSD even though they weren’t there. These events were just epigenetically transmitted.  

We know through cognitive behavior therapy that if you don’t change the way you interpret reality, you can release a whole storm of inflammatory and toxic neurochemistry which then influences your cellular expression of micro RNA, which then influences metabolic cellular outcomes; so your very thoughts, every single thought you think, 60,000 thoughts a day depending on how you bias those thoughts, determines physiological outcomes. That’s what CBT is all about. Those of you know about CBT- (cognitive behavioral therapy) – is all about changing the way you interpret reality, based on a new world view or interpretation. We have a saying in this work that we don’t heal until we actually have a new image, a new way of interpretation, a new way of looking at the world, a new story. Also, we don’t heal until we align ourselves in an accepting if not loving way with our mothers and fathers, and our ancestors. Those of you who hate your mothers and fathers. Those of you who cut off from your mothers and fathers. Those of you who judge your mothers and fathers for not having given you enough. You need to maybe open that up and look a bit closer because you are half your mother and you are half your father. How are you going to heal and cut off half your lifeforce? You can’t do it.  I tell my kids, when they need new partners, I say to them, here’s your screening tool, the one question to ask the person in front of you to whom you are potentially attracted to, “how are you with your mother and father”? Just ask the question. If they tell you that they hate their mother and father, and that they never want to see them again, run like hell. It’s not going to go well. And I tell you that’s a very reliable indicator for how people are in the world. So we use a much larger, larger model to view and interpret people’s health.

Just by way of some definitions. Dementia is when cognition fails, but Alzheimer’s is characterized by particular findings that you find in the brain. The tangles, and the amyloid plaque that defines Alzheimer’s and although it starts with memory loss, it very soon ends up in the inability to formulate language, and then socialize, and then eventually end up in the with the reptilian brain expression where you barely function. You can eat, you can sleep, but your whole orientation to the world outside of you is shut down. 

There are different types of dementia. Alzheimer’s is the most common, but there are other types. Neurologists are extraordinarily good diagnosticians. So, if anybody has a dementing process, or cognitive decline, you really do want to see your neurologist because they have the ability to really discern the subtleties of different types of dementia, and what differentiates Alzheimer’s disease from other forms of dementia. As I said there is the APOE4 gene- if you have the APOE  3/3 gene, you have a 9% risk of Alzheimer’s. If you have the 3/4 gene you have a 30% three times increased risk, and if you have the 4/4 gene you have a 50-90% risk potential for developing Alzheimer’s disease as you age if you don’t do something to change the inputs. There is a website https://www.apoe4.info/wp/ for carriers of these genes because the people who run this website are aware now of how profound this gene is. This website is dedicated to informing individuals with the gene and what can be done to down-regulate the potentially negative outcomes of disease expression. 

I’m going to skip some of the basics because I know I’m going to run out of time but here’s the hallmark of Alzheimer’s, these tau tangles which are in the neurofibrillary and the amyloid plaque. This creates an inflammatory response which shuts down neuronal synaptic communication, which kills neurons so as your synapses die from these tangles, neurons die. Your brain atrophies and dementia can ensue, and if you had to look at what in at the most minute level- what’s really going on in Alzheimer’s disease. It has everything to do with the interplay between trophic factors and blastic factors, growth factors and destructive factors that influence one particular protein called the amyloid precursor protein. This is where amyloid plaque comes from, it comes from this protein. It’s a subset of it and you have what are called molecular scissors, or proteases that come along and they snip through this amyloid precursor protein. If it makes one snip, you get the anti-Alzheimer’s outcome. If it makes four snips, you get the pro Alzheimer’s outcome, so the entire Bredesen protocol is everything to do with how you influence these molecular scissors to favorably produce the two pieces of amyloid precursor protein, as opposed to the four. That’s what it is, what you can do to drive support for neurons, as opposed to destruction of neurons by influencing these molecular switches. That’s it at the molecular level anyway. 

So, we don’t go progress straight to Alzheimer’s disease. Before Alzheimer’s occurs, there’s a subjective cognitive decline that can occur, for people 10-15 years before where people may say “I’m just off my game, I’m not as smart as I used to be now.” Normal aging produces this, our brains slow down but if you are going down the dementing routes- if you’re going down the Alzheimer’s route, you may start in a preclinical way. Some of your tests may be already positive before you actually pick it up. It’s subjective decline. Then you actually start to get mild cognitive decline where you actually objectively starting to register negatively with specific testing. I can’t tell you how many people come to my office who are running corporations, CEOs, with mild cognitive decline. Their biochemistry, their markers of cognition, they fail, but they’re still operational but they’ve got objective signs of decline. After that is when you lose tasks of daily living and you start to go down the dementing path. There is a difference between dementia and normal aging with statements like “I forgot my keys.” People with just normal aging usually remember where they parked. They can retrace their movements and realize, “Ah that’s where I left them.” So, these are some differences, but it’s a bit of a fuzzy line in the beginning. As I said those of you on the right side of your biological drives when your brains speed is still travelling at 300 milliseconds. You still got a good brain speed, so you’re not so concerned about this but I’m personally on the other side of that curve and I’m very concerned about things like this. That’s why I started the brain treatment centre, not only to help patients. I had a selfish interest; I want to keep my brain moving at 300 milliseconds for as long as I can. Okay so this is the difference. Everything has to do with brain speed. Our brains move at 300 milliseconds per second. After age 20, and every decade thereafter, 10 milliseconds are lost just through normal aging. That’s profound, you know when your brain speed slows down you literally slow down. When your brain slows down, neurons and synapses die and there may be a bad outcome if you don’t do something about it. There’s a separation, a gap, between thinking a thought and executing the thought, by doing. 

There’s many reasons why people’s brains slow down or are exacerbated by lifestyle issues that don’t lead to necessarily dementing Alzheimer’s illness. The aging is the number one cause of brain slowing down but then you may have strokes and stress. People also drink far too much, it’s a neurotoxin they get addicted to. Certain things, prescription medications, can have profound effects. I mean you have no idea how many statins are given out like candy. Some of them cross the blood-brain barrier and shut down cholesterol metabolism. Cholesterol is a building block of brain neurons and myelin. You have got to think before people start taking these drugs. Some people come into the office and we suggest they go through something called the Cognoscopy. Everybody at age 50 gets a free colonoscopy, free under health care. Now, in terms of the future, start spreading the word, ask you friends, ask your parents, mom have you undergone a cognoscopy? A cognoscopy is a brain evaluation. Now your mother will say no because it doesn’t exist in the healthcare system. We can plant the seed; we can start thinking about it. It will happen because as I said in the beginning, try living one day without a functional brain. You know, it’s awful.

At the clinic we do questionnaires. Any of you recognize this MoCA (Montreal Cognitive Assessment)? You recognize it? Do you remember Donald Trump 2 months ago flashed this test and said “I’m brilliant, I’m a genius.” No, I’m serious he did pass the most elementary of cognition testing called the MoCA- and this is a five-minute test. He got 30 out of 30 apparently, but people with dementia they fail it. If you know anybody with a score less than 19, you’re on the wrong side of your MoCA. Your MoCA score for the average Alzheimer’s patient is around 16, 16.2. If the score is 19 to 22 those people with dementia will, if they can’t you now- they can’t take care of the daily tasks of living.  That’s a serious pattern. People with a mild cognitive impairment they have a MoCA score between 22 to 25. People who passed had a score of 26 or up. If you want to be in that range, I suggest that you get your brains assessed even if you do this online. It takes five minutes. We also have at our center the computerized CNS vital signs tool which is a computerized measurement of cognition. With this slide you can see this is one of our Alzheimer’s patients. They can’t perform the tasks of executive functioning which the frontal lobe performs. What we take for granted they completely failed as opposed to somebody with a relatively normal executive functioning. You see how the brain atrophies and the brain atrophy starts in this part of the brain called the medial temporal cortex; that’s the hippocampus. The hippocampus is where we lay down new memories. It has limited capacity but we lay down our new memories in the hippocampus and as the dementing process spreads, it reduces the hippocampal neurogenesis and the nerves start to die but then it’s spread throughout the brain and this is a typical brain with Alzheimer’s. It really is shrunk, it’s quite remarkable, when you see it on MRI and there’s many imaging techniques which are used, MRIs, FDG-PET scans, amyloid PET scans, there’s all kinds of diagnostic tests. We’ve recently introduced in Canada software called the NeuroQuant MRI and this has to be privately ordered. You can’t get this from healthcare, I’ve asked, they won’t do it. But this NeuroQuant MRI actually measures objectively the size of each different area of your brain and compares you to a normative database of particularly the hippocampus and the frontal cortex. These are the two parts that go first, they shrink and we can objectively measure and compare these to other people’s brains. A normal MRI doesn’t do this. Here you can see the hippocampus is reduced. We also do QEEGs, and we can see the brain slowing down, that’s a slowed brainwave that we measure through a QEEG. 

Then we get to Dr. Bresden’s six subtypes of Alzheimer’s disease. Here we really have to understand the different six subtypes to learn how to work them up and how to treat them. If we don’t understand them according to this model, we can’t treat themand so the subtypes are: 

A) Inflammation. Here inflammation is at the root cause of the Alzheimer’s expression, Here, all these inflammatory markers get expressed in APOE4 subtypes. Inflammation is the most important risk factor for that subtype. Here you can see the hippocampus atrophied. We then have to seek out all the causes of that inflammation and all of you know the following triggers very well. Food, gut health, leaky gut, this is at the basis of this inflammatory subtype. We look at the causes of leaky gut, these are all lifestyle issues and we can actually measure how leaky your gut is and how leaky your brain is. You can actually measure now with specific labs the leakiness of your barrier functions and you can measure gut ecology and look at inflammatory factors. You can measure and look at zonulin – the protein that causes leakiness and histamine that makes it worse and then you can actually measure the protein in the lipopolysaccharide coating of bacteria that leak across the gut and cause bacterial endotoxemia and an inflammatory response. These are called LPS lipopolysaccharides. This is the root of many inflammatory brain disorders. Look at all the diseases that get expressed when lipopolysaccharides get expressed.

Then you look at food sensitivities. There are many different ways to look at food sensitivities. Many people come and see me and they have done one IgG test. That’s not it, you have to look at different immunological pathways to look at food expression. One test at our local private lab for IgG foods is not how you work up food sensitivity. You must learn about the other methodologies because they are extremely relevant. One may be positive may be negative in the next test. We also do a whole ton of work around gluten. Gluten as you know, nobody processes gluten well, even if you have or don’t have celiac disease. Even if you have or don’t have gluten sensitivity, nobody has the enzymes to break down the gluten molecule. Nobody. Dr. Fasano the great gluten researcher has said this for 10 years. You get a leaky gut from gluten, now those of you without the bad genes can repair it within hours. But every time you have gluten, you have a leaky gut- quick repair- ok. We measure the gluten molecule in all of its subsets with specialized labs and we measure antibodies to cross-reactive foods. Gluten cross-reacts with different foods. How many of you like coffee? How many of you like coffee and are gluten sensitive? How many of you knew (instant) coffee performs molecular mimicry and ignites the same pathways as gluten may? Just a thought. A particularly horrible thought. And then we can measure antibodies to specific tissue. We can measure antibodies against all of our organs and particularly we can actually measure immune systems attacking of core neurological structures, synapses, tubulins, myelin. You can see how under attack your brain is when you start doing these tests. 

Dentistry. How many of you lump dentistry and health together? How many of you lump dentistry and medicine together? It’s a separated discipline in present ways it is practiced. We can’t work up an Alzheimer’s patient without doing an extensive dental work-up. I do a panorex x-ray and a 3D cone beam CT, looking for periodontal disease, root canals, mercury fillings, dissimilar metals, implants, cavitations. There’s a whole slew of potential toxicity existing in the mouth. Multiple studies show the link between periodontal disease and the risk of Alzheimer’s disease. We do peridontal workups.

B). The second subtype is the glycotoxic, the type that causes too much sugar. Sugar as you all know is a potent, potent toxin. It should be a classified substance. 300 years ago, it was sought after like cocaine is today, people would seek it out because they knew how it made you feel- temporarily. Our bodies can’t cope with more than 15 grams of sugar a day. What is in one  sugar soda contain -4200 grams of sugar (not diet). We can’t cope with this huge input of sugar, I mean I know you know formulas but this is the second subtype that causes neurological causes, dementing processes.

C) And then we get the atrophic type, the atrophic type is the type that as the brain ages, it loses neurotropic support, vitamin D, zinc, estrogen, testosterone, pregnenolone, DHEA, all of it gets withdrawn as we age. If there’s one thing in my practice that I enjoy the most, is to see a postmenopausal woman who’s not dementing but she has cognitive decline, go back onto bioidentical hormones and they are so happy. Three months later they come in and the first thing they’ll say, I can’t believe it, I’ve got my brain back. Why? Estrogen is a neurotropic, neuroblastic hormone. It improves synaptic connections and improves dopamine; it changes cognition dramatically. This is the second type. 

D) The third subtype is the subtype that is toxic. This is a subtype of Alzheimer’s, it’s a different presentation of Alzheimer’s. It’s usually in younger people, it’s not so much influenced by the APOE4 gene and they usually present with a lot of frontal lobe symptoms as opposed to the typical hippocampal memory loss. But they do get- the first sign of somebody who’s got a toxic sort of brain is somebody who can’t multitask anymore. They used to do five things and now they can’t, they just have to delegate and that’s one of the first symptoms and we have a whole new world of work being done by Ritchie Shoemaker and others on the chronic inflammatory response syndrome. This is where the innate immune system is upregulated due to mold and Lyme and it causes this very specific profile of inflammation through the innate immune system which affects the brain and effects all the neuro peptides in the brain which regulate leaky gut which regulate hormones which regulate oxygen delivery to mitochondria. This is a whole subset of work that’s going on not in mainstream medicine, you won’t see it, you won’t find it, it’s not there but it’s in the research literature and we do certain things in our clinic to try and find out. We do questionnaires of that particular type, type three chronic inflammatory response. We look at the visual contrast test to see if people fail this test and we do spore counts and mold counts in their homes. Then we look at metals, heavy metals is a big cause and pesticides and air pollution and Lyme disease. How many people will have heard about Lyme disease epidemic, it doesn’t exist in Alberta right? Yeah. My entire day- do day-to-day, week-to-week- is made up by mold and Lyme, toxic people. They travel, they get it from other sources and we believe now the literature’s quite clear that Lyme disease may be transmitted by other factors, and there’s literature here in Calgary by Maureen Middleveen, that it may be sexually transmitted as well. This hasn’t been published in peer-reviewed journals but the literature is out there making those suggestions. With Lyme disease we find the pathogen inside the brains of people with Alzheimer’s disease. We find herpes simplex 1, the good old cold sore as a big cause. There is also a link between pesticides and Alzheimer’s. Glyphosate. How many of you eat organic food? Even organic food is riddled with glyphosate because of cross-contamination. It’s everywhere. Glyphosate is highly toxic to many core organs. It causes gut permeability; it shuts down neuronal pathways. 

E) Then the vascular subtype is with people with hypertension and atherosclerosis which decreases oxygen supply to the brain causing Alzheimer’s decline. 

F) And then we get the traumatic subtyppe; the brain injured people; I mean look at these statistics. Not all head trauma patients will develop Alzheimer’s, but there is 2.3 times increase incidence in mild or moderate traumatic brain injury. 4.5 increase in severe brain trauma. There are no studies linking mild brain injury to Alzheimer’s disease, but three or more concussions -a fivefold higher incidence for memory loss and cognitive impairment.

I’m out of time. Well there’s a whole slew of lab tests you can do to sort of think through this problem. You won’t get it under health care, you won’t get it from your family doctor, in fact you’ll get dismissed so it’s up to you to educate yourself. Dr. Bredesen’s book The End of Alzheimer’s is fabulous, I suggest you read it and you start working through your own cognoscopies, how you can work yourself up to see if you’re at risk and then therapeutically there’s at least 36 things you can do to down regulate cognitive decline and/or Alzheimer’s of which- guess what’s number one? Nutrition. 

One last word, ketogenic diets seems to trump every other diet when to comes to changing brain outcomes. Combine that with good sleep, exercise, stress reduction, you’ve got the four pillars of turning down mild cognitive decline of potential dementia, and then you can look at all the other factors with influence outcomes and just teach yourself because nobody out there is going to teach it to you and you definitely won’t get it from your medical doctors. So thank you very much. Thank you.

Judith Cobb:

Thank you, Dr. Hoffman, that was amazing. If you have questions please come and use the mic, we have about 8 minutes for questions, and at 9:30 you might get cut off right in the middle because we’ll be live streaming with Toronto, so questions?

Question:

Just a quick one, I know vitamin D is a really controversial item right now and is limited in information especially with auto-immunity, so what do you recommend for dosing, food versus supplements in the grocery list this summer?

Dr. Bruce Hoffman:

So, those are the  foods that contain vitamin D, this is how you can calculate your vitamin D needs, but I can tell you it’s not that accurate. Every Calgarian that I’ve ever seen who’s not on vitamin D supplements is vitamin D deficient, everyone. But you can’t tell them how much to take because everybody has a variation in the amount they need, depending on A) The VDR gene receptors which is from the 23andme gene test. because the people with a VDR plus plus gene need a lot more vitamin D. The state of the small intestines is where you absorb vitamin D and many people have very disrupted small intestines, and they have SIBO and small bowel SIFO with fungal overgrowth and they don’t absorb the D vitamin and you need the D vitamin and you need a lot of oil. In fact, Vit D – this is a fat-soluble vitamin. I can’t tell you how many people are fatty acid deficient, the majority of people by far. Everybody’s taking omega-3s, that’s epidemic right now, everybody comes in taking fish oil- fish oil isn’t it. It’s got benefits but you need your omega-3, your sixes, your nines, your mono and saturate fats; your saturates in order to absorb vitamin D and vitamin A and vitamin E which are fat soluble. So, to answer that question is complex but patients hate me, they always ask me questions and I say “I’m not sure, it’s complex”, they go “give me an answer”. Then I will do a ten minute explanation, and they go “oh I see”. So that’s the kind of complexity that this requires to answer that question.

Question:

For people in our industry, it’s really hard for us to help with stuff like this especially now that Alberta does not test vitamin D, so how do you recommend we help people that do come to us with these issues when we can’t convince them to their doctor to get tested for this?

Dr. Bruce Hoffman:

So, it’s a great question. First of all, you can get vitamin D tested just so you know, there’s a trick. Yes, the trick you got to have a friendly GP who’s going to lie and say you’ve got celiac disease or malabsorption syndrome or osteoporosis. They need to sign a form, if they sign the form you can get it done, but I can tell you from my experience, none of them will, but if you have a good relationship with them and you can prove to them that there’s a need, they will do it for you. If you put a circle where it shouldn’t be and you don’t cross the box where it should be, you’ll be rejected. It’s that weird, that’s firstly. Secondly you can get vitamin D from private labs so people have to spend out of pocket. 

This notion of having Canadian healthcare pay for your functional medicine and wellbeing, please give it up, it’s not going to happen. You have to have health as an extremely high value and you have to invest in your health with your own after-tax dollars because they won’t let you deduct it in order to maximize your health outcomes. Please don’t think that Alberta health care is going to do this for you and I don’t think they should by the way. People always feel almost shattered when I say that. The disease based system,  we already pay exorbitant taxes to fund the free health care and they do a good job of you know, when we have a heart attack and go to the emergency and we get 5-star treatment and intensive care. Don’t try and muddy the waters asking that system which treats tertiary disease, to start doing preventative medicine overnight. I think it will creep in overtime but if you want them to do functional medicine and preventive medicine and start to fund what you do your taxes will be 95%. It can’t happen, so please be responsible, get rid of an adolescent fantasy that health care should take care of all this, it won’t and I don’t think it can afford to. You have to have health as a high value, you have to invest in yourself, you have to educate yourself,  you have to become your own patient advocate and you have to do what it takes to get you where you need to go.

Question:

Hello, outside of MRIs, EEGs, CAT scans and others in our regular system, how do you feel about the spec imaging, neurospec imaging?

Dr. Bruce Hoffman:

Neurospec imaging? It’s not- it’s generalized but it’s not specific. You can see signs and symptoms, you can see certain images like you know the ring of fire, Daniel Amen’s. It’s not specific but it is done. PET scans, more accurate and some of the more advanced PET scans are more accurate. Neurospec is sort of a secondary test, I wouldn’t use it as a primary test unless you got free access.

Question:

Hi, I just saw on a slide that you said with inflammation it had to do with Pitta and Ayurveda and what the relationship was there?

Dr. Bruce Hoffman:

Are you familiar with the Ayurveda? So, I evaded talking about doshas- doshas are constellations of elements, vata is air and space, pitta is fire. What is inflammation? Fire, too much fire.

Question:

So, someone with Pitta is more susceptible to Alzheimer’s?

Dr. Bruce Hoffman:

I don’t know if that’s statistically true, but theoretically of the subtype one, inflammation, I would say, I would posit a guess, I don’t think studies have been done- now Bredesen knows a bit about Ayurveda.  I was astonished that he did, so I would think they may be something to that, there may be literature on that  that but I can’t say for sure, but it makes sense. Pita is the hardest to treat by the way. 

[embed_popupally_pro popup_id=”5″]

Can You Reduce Your COVID-19 Risk With Lifestyle Changes?

By now, you’ve likely heard that pre-existing conditions, including heart disease and diabetes, contribute to more severe COVID-19 symptoms, complications, and even death. However, media fail to mention that heart disease and diabetes are largely lifestyle-related diseases. They develop over a long period of time as a result of poor diet choices, sedentary behavior, stress, and other daily habits.

This is good news because it means that you’re largely in control of what you eat, how you move, and other lifestyle choices you can make to take back your health and prevent disease. You can always change your habits.

By implementing diet and lifestyle changes that support your body, you strengthen the immune system, prevent chronic disease, maintain a healthy weight, and even reduce your risk of extreme COVID-19 symptoms. This provides you with better defenses against whatever viruses and other pathogens you’re exposed to in the future.

I’m here to tell you that your daily health habits are your best defense against COVID-19. Now is the best time to begin making changes, maintaining those changes, and prioritizing your health.

In this article, you’ll learn about:

  • Rates of obesity and chronic disease
  • What the research says about pre-existing conditions and COVID-19
  • Why we need to focus on preventing chronic disease
  • My top five lifestyle tips for preventing chronic disease and COVID-19

Obesity and Chronic Disease

Rates of obesity are increasing in North America and have been trending upward for several decades. Obesity is defined as a body mass index (BMI) of 30 or greater. In Canada, 30 per cent of adults are classified as obese and in the United States, it’s over 40 per cent.

Obesity is a major risk factor for chronic diseases including type-2 diabetes, heart disease, stroke, high blood pressure, cancer, and other conditions. The rates of obesity on our continent are higher than other areas hard hit by COVID-19, including Italy and China.

It’s estimated that around 8 per cent of the Canadian population over twelve years of age have been diagnosed with diabetes. That’s over 30 million people and numbers continue to increase each year. This statistic doesn’t take into account those with metabolic syndrome, pre-diabetes, or those with diabetes that haven’t been diagnosed. The true numbers are likely much more staggering!

In addition, the leading causes of death in Canada are cancer, heart disease, and stroke, making up more than 50 per cent of total annual deaths.

When I take a look at the rates of chronic disease in our country it makes me stop and think.

At the root of this pandemic there isn’t just COVID-19, but chronic metabolic disease fueling the flames of the virus.

Pre-Existing Conditions and COVID-19

Those with pre-existing conditions may need to take extra precautions for avoiding COVID-19 infections, even as public places begin to reopen. To learn more about protecting yourself from novel coronavirus infection, you can read my recent blog on the topic, 'COVID-19 How to Protect and Assess Yourself.'

Here’s a list of pre-existing conditions that may increase the severity of COVID-19:

  • Diabetes
  • Heart disease
  • Asthma
  • Chronic lung diseases, including COPD, emphysema, and cystic fibrosis
  • Chronic kidney disease, especially for those requiring dialysis
  • Obesity
  • Immunocompromised, including those with HIV, organ transplant recipients, and people undergoing cancer treatment such as chemotherapy
  • Liver disease

Although age isn’t a pre-existing condition, we do know that older individuals, especially those over 65, have a greater risk of developing more severe symptoms and are dying at higher rates from COVID-19. This may be because immune function decreases with age. However, it may also be because rates of inflammation and chronic disease tend to increase as we get older, as we practice poor habits over a longer span of time and lose protective lean body mass.

A recent study of 5700 patients in New York City that were hospitalized with COVID-19 showed that 88 per cent had at least two chronic health conditions. (1) The most common comorbidities were hypertension, obesity, and diabetes. In another New York City study, being over 65 years old and obese were found to be the greatest risk factors for hospitalization from COVID-19. (2) Obesity goes hand-in-hand with inflammation and is often a contributing factor to other comorbidities.

In another study of 187 patients with COVID-19, 27.8 per cent had heart complications, which is associated with fatal outcomes. (3) In addition, 35.3 per cent of the patients in the study had underlying heart issues, including hypertension, coronary artery disease, or cardiomyopathy, a heart muscle disease that makes it harder for the heart to pump blood.

This makes sense when we think about the link between the heart and the lungs. The lungs oxygenate the blood and the heart delivers the blood throughout the body. With COVID-19, it becomes harder to breathe, oxygen levels drop, and the heart has to pump faster. An underlying issue with the heart only makes this situation worse.

In addition, it’s important to note that diabetes is often the driver of heart disease as chronically elevated blood sugar damages the heart. A study from Wuhan, China, states that diabetes is one of the most common risk factors for death from COVID-19 and that a staggering 69 per cent of hospitalized patients had ‘non-ideal’ blood sugar levels. (4)

In another report from China, this one involving over 72,000 COVID-19 cases, those with diabetes were found to be three times more likely to die from COVID-19 when compared to overall death rates. (5) This study also reports the death rate from cardiovascular disease to be 10.5 per cent and 7.3 per cent for chronic respiratory disease, compared to a 2.3 per cent overall death rate.

I’m sure as time goes on, we’ll see more data confirming the link between COVID-19 severity and chronic disease.

A Radical Solution: Prevention

There’s a lot of talk in the media about medications, vaccines, and other treatments and while these will certainly have their place when available, the missing piece of the puzzle is prevention.

As an integrative and functional medicine doctor, I’m keenly aware that all body systems are connected and am always looking for the root cause. If one of the root causes of COVID-19 mortality is obesity and chronic disease, then let’s address what’s below the surface. The good news is that diet and lifestyle habits create health, halt disease progression, and in some cases even reverse chronic conditions. Addressing the health of the population is likely to help a huge number of people during this, and future, pandemics.

A recent article published in Obesity states: “Until further breakthroughs emerge, we should remember that modifiable lifestyle factors like diet and physical activity should not be marginalized. Decades of empirical evidence support both as key factors promoting health and wellness.” (6)

Dr. Hoffman’s Top 5 Tips for Chronic Disease and COVID-19 Prevention

  1. Adopt a whole food diet. This means ditching the processed, high-sugar, and packaged foods in favour of cooking at home. One silver lining of all the shelter in place orders has been that many people are cooking more, which is incredibly beneficial for health. In addition, focusing on eating whole food most of the time helps you to naturally achieve a healthy weight.If you have insulin resistance or diabetes, consider a low carb or keto diet to help manage blood sugar. At the Hoffman Centre for Integrative and Functional Medicine, we often see blood sugar dysregulation in its early stages and are able to course correct before it progresses to diabetes. My team and I are here to help you personalize your dietary approach for your unique needs.
  2. Move your body. Exercise helps your body and mind to function at its best, is a wonderful tool for blood sugar management, keeps you mobile as you age, and helps to prevent chronic disease. My best advice is to make exercise fun and enjoyable instead of it being a chore. The key is building movement habits into your day and week and I promise, as you move more, it will get easier and your body will naturally want to move.You can read more about my approach to exercise on my blog post, "Exercise Smarter, Not Harder: How to Optimize Your Workout for Your Brain and Body".
  3. Stress less. Stress contributes to weight gain, inflammation, and chronic disease. Tools such as movement, meditation, neurofeedback, and biofeedback are incredibly helpful to incorporate into a self-care routine. Here at Hoffman Centre, we can help you learn tools to pull your body’s nervous system out of a stressed state and into a relaxed one. When considering stress, it’s important to note that not sleeping enough and exposure to toxins cause stress in the body, along with the typical stressors that we’re familiar with.
  4. Optimize your vitamin D levels. Vitamin D is incredibly important for proper immune function and deficiency has been linked to a variety of chronic diseases. (7) Vitamin D deficiency is a very common nutrient deficiency, especially here in Canada because of our northern latitude. A recent article suggests that because of vitamin D’s role in reducing respiratory tract infections, supplementation may reduce the risk of COVID-19 infections and death. (8)
  5. Consider supplements. It takes time to move the needle on your health and while you work to put the foundational pieces of diet, movement, and stress management into place, supplements help to bridge the gap. My team and I support patients with developing personalized supplement protocols for their health concerns.In addition, supplements provide immune support, which may be of particular benefit to those at higher risk for severe COVID-19 infections. Consider vitamin D, vitamin C, zinc, probiotics, curcumin, green tea, and others. The Institute for Functional Medicine released a handout with potentially supportive supplements for both prevention and treatment of COVID-19.

When we look deeper to uncover root causes, we see that poor health and chronic disease not only affect quality of life. It also increases risk of pandemic infections. This connection is empowering because so much of what contributes to, or prevents, chronic disease is completely within our control. It truly is never too late to make changes.

If it feels overwhelming to change your daily habits to improve your health, including upgrading your nutrition and moving your body, start with one small and achievable goal. Once that first habit’s in place, work on the next. Over time, you’ll achieve sustainable lifestyle change and will notice differences in your body and how you feel. Please note that we’d love to support you here at the Hoffman Centre for Integrative and Functional Medicine, so don’t hesitate to contact us for an appointment.

References

  1. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area [published online ahead of print, 2020 Apr 22]. JAMA. 2020;10.1001/jama.2020.6775. Abstract: https://pubmed.ncbi.nlm.nih.gov/32320003/
  2. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospitalization and critical illness among 4103 patients with COVID-19 disease in New York City. [Preprint article] medRxiv 2020.04.08.20057794 Abstract: https://www.medrxiv.org/content/10.1101/2020.04.08.20057794v1
  3. Guo T, Fan Y, Chen M, et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. Published online March 27, 2020. Full text: https://jamanetwork.com/journals/jamacardiology/fullarticle/2763845
  4. Zhou J, Tan J. Diabetes patients with COVID-19 need better blood glucose management in Wuhan, China [published online ahead of print, 2020 Mar 24]. Metabolism. 2020;107:154216. Full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102634/
  5. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. 2020;323(13):1239–1242.Full text: https://jamanetwork.com/journals/jama/fullarticle/2762130
  6. Carter SJ, Baranauskas MN, Fly AD. Considerations for obesity, vitamin D, and physical activity amidst the COVID-19 pandemic [published online ahead of print, 2020 Apr 16]. Obesity (Silver Spring). 2020;10.1002/oby.22838. doi:10.1002/oby.22838 Abstract: https://pubmed.ncbi.nlm.nih.gov/32299148/
  7. Heaney RP. Vitamin D in health and disease. Clin J Am Soc Nephrol. 2008;3(5):1535‐1541. Full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571146/
  8. Grant WB, Lahore H, McDonnell SL, et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020;12(4):E988. Published 2020 Apr 2. Full text: https://www.mdpi.com/2072-6643/12/4/988/htm

The Hydroxychloroquine and Azithromycin Controversy

In recent weeks there’s been a huge amount of attention being given to the drugs hydroxychloroquine and azithromycin. A study published last week, April 9th 2020, on 1,061 patients that were treated early on in the course of their illness with these two drugs, led to some profound conclusions. The study was conducted by French researcher Dr. Didier Raoult, a well respected but controversial French M.D. The study followed on from a smaller study with a cohort of twenty patients that yielded similar results, which are referred to in the graph below.

The data released showed that:

  • 92% had excellent outcomes.
  • Ten patients out of the 1,061 patients had to go to ICU.
  • 4% of the patients treated had persistent virus beyond the ten day treatment window determined as the cut-off by the researchers regarding whether to attribute success or not.
  • 4% had a poor outcome defined as extending their hospital stay beyond the ten days.
  • Five patients died.

Results concluded by the researchers established that:

    • The treatment was considered safe with no side effects. This is relevant as I’ve used both these drugs for many years in the treatment of chronic Lyme disease and have never seen any side effects for either of them besides nausea from azithromycin, especially if not taken with a full meal. Hydroxychloroquine use requires a six-month ophthalmology checkup to look for retinal changes, which is far beyond the timeline required for the treatment of Covid-19. I should point out that I have never seen these retinal changes in patients on long-term hydroxychloroquine use. The potential retinal damage is related to length of use and dosage. In addition, cardiomyopathy (an enlarged heart) has been detected in a few patients treated with hydroxychloroquine.i ii
    • The amount of hydroxychloroquine in a patient’s blood correlated with the success of their outcome. Different absorption rates for different patients was a consideration.
    • Some blood pressure medication was associated with much poorer outcomes. ACE inhibitors (angiotensin converting enzyme inhibitors) iii were considered to lead to poorer outcomes while ARB (angiotensin II receptor blockers) ivusers had a better outcome. I’ll be discussing these two drugs in a later post.
    • These results were seen to be promising and have resulted in the NIH preparing to begin a 500-person trial

Dr. Raoult did emphasize the importance of excluding cardiac issues before commencing the studies. Dr. Raoult has spoken out strongly about the “dictatorship of the methodologists” that insist on first-class or gold standard research trials, which are randomized and with control groups, before applying the science. He believes it’s inhumane to subject patients to control arms when there’s clear evidence that the treatment would benefit the patients. v

The details of the study

  • Patients with COVID-19 infection were treated with hydroxychloroquine and azithromycin.
  • Plaquenil 200mg was given three times per day for ten days and azithromycin 250mg was given for five days, twice the first day then once for the next four days.
  • In order to avoid cardiac problems, an ECG was performed before starting treatment.
  • A low-dose CT scan was also performed to assess any potential lung damage.
  • The evaluation of the virologic effect was done with PCR blood test before inclusion.
  • The quantification of the viral load was conducted on a nasopharyngeal sample.
  • A PCR blood test was repeated on day five to verify that the virus was undetectable or at levels too low to present a contagious risk. This test can detect pieces of viral DNA of the actual virus, although one can’t say if the viral tissue is alive or dead, only that a piece of the virus is in your body.

Please Note

These drugs are presently unavailable to most pharmacies and are only available to chronic autoimmune patients, who are on them for long-term use. Directives from health authorities in Canada have discouraged prescribing any of the recent popular drugs put forward as potential treatment for Covid-19 with the warning that there are no treatments currently available to treat Covid-19 and that we, as M.Ds, must be cognizant of evidence-based prescribing for recognized conditions. Included in the list of drugs that shouldn’t be currently subscribed were hydroxychloroquine, chloroquine, remdesivir, lopinavir/ritonavir, colchicine, and azithromycin)

hydroxychloroquine

Disclaimer: Do not take these medications without the guidance of a doctor.

References

i https://www.ncbi.nlm.nih.gov/pubmed/25672591
ii https://www.researchgate.net/publication/236601571_Chloroquine_cardiomyopathy-a_review_of_the_literature
iii Examples of ACE inhibitors include: Accupril (quinapril), Aceon (perindopril, Altace (ramipril), Capoten (captopril), Lotensin (benazepril), Mavik (trandolapril), Monopril (fosinopril), Prinivil, Zestril (lisinopril)
iv The ARBs that are currently available are: azilsartan (Edarbi), candesartan (Atacand), eprosartan (Teveten), irbesartan (Avapro), telmisartan (Micardis), valsartan (Diovan, Prexxartan), losartan (Cozaar), olmesartan (Benicar)
v Is France’s president fueling the hype over an (Science Mag) unproven coronavirus treatment
vi www.doctoroz.com The Dr. Oz Show Medical Unit

COVID-19 How to Protect and Assess Yourself

In the current Covid-19 Pandemic we get asked a lot of questions about the best ways on how to protect and assess yourself. We've gathered some great recommendations that we've found to be very useful and came up with a few of our own suggestions.

Most of the following recommendations come from from a video conference given by Dr. Dave Price, an ER physician. Watch this video by Dr. Dave Price, Protecting Your Family ER doctor at Cornell University.

Covid-19 A Brief Summary

What is COVID-19?

A virus from the common cold family, the coronavirus has never been seen by the human body before, hence the virulence. The virus appears to have come from an animal.

Symptoms

The most common symptoms are a fever, cough, and sore throat. The virus then travels throughout the body and goes mostly to the lungs although there can also be cardiac involvement. Patients commonly present with a cough or are just not feeling good, with a cough and mild headache. Most people just don’t feel good when they suffer from the virus. The infection can last anywhere from five to fourteen days. Those with a mild case of the disease usually feel better around the fifth day. In more severe cases, those that are more affected will become short of breath between the third and the fifth day then feel better around the seventh day.

How do we get the disease?

Coronavirus is contracted almost exclusively from moving your hands to your face. You have to have long and sustained contact with someone who has the disease. The vast majority will have a fever and aches or will be someone that is going to get the disease in the next one or two days. This virus is almost entirely transferred from your hands to your face, into the eyes, nose, or mouth. Keep your hands away from your face and you're mostly good.  Super clean hands, never touching the face. Boom.

There is some suggestion you can get the virus from aerosolization, in other words because it’s airborne. However, for this to occur you need long sustained and unprotected contact for at least fifteen to thirty minutes, in a closed room with no mask. Most people get it from touching someone with the disease or someone who is about the get the disease. Covid-19 is in your community right now. I’m not attempting to scare you, but simply empower you to take the necessary steps to protect your hand to face spread.

Follow 4 Rules to Protect Yourself

1. Become a 'hand washing fanatic'

Know where your hands are and keep them cleaned and sanitised at all times. Walk around with Purell or hand wipes. Leave your door, Purell. Open the door and then Purell. If you keep your hands clean, you dramatically reduce the risk of infection and if you combine washing your hands with not touching your face, you will NOT get this. Covid-19 is mostly contracted from sustained contact with someone who has it. However, because of the risk of slight exposure on objects, make sure that you always keep your hands clean.

2. Psychologically work at the connection between your hands and face

We touch our face thousands of times a day without thinking, whether we’re scratching, picking, rubbing, or pondering. Start to monitor yourself doing this, gamify not touching your face or wear a mask indoors to train yourself in this new behaviour.

3. You don't need a N95 medical mask

When you leave the house, wear a mask or something wrapped around your mouth and nose, to stop you touching your face. Any covering of your face is good. The mask doesn't prevent the disease but simply trains you not to touch your face. So, when you leave your house, add a mask. This will prevent transmission 99% of the time. Clean hands and not touching your face is the key. The general community has zero need for a N95 mask. If you’re in a room with a Covid-19 patient who has a risk of aerosolization, you need a N95 mask. If you’re going to the grocery store and touch the cart, just make sure that you clean the handle.

4. Distance yourself from others

Keep around three to six feet away from other people. Shrink your social circle for now. Find your small group and don't break from it. Do all other socialising digitally. We’ll need to physically distance for the next three to six months, maybe longer if we see another little spike. Become used to keeping this distance and don’t allow yourself to slip with this. You don’t need to be afraid of your neighbour. The better you are at doing this, the less likely you'll catch or transmit the infection.

And that’s it. Just four very simple rules.

The only way you will get this disease is if your hands are contaminated, you touch your face, and you stand too close to a contaminated person. You don’t need to be afraid if you go out to the grocery store. The person three to six feet away from you is not your enemy.

What Should You Do If You Have a Cold?

Behave as if you have coronavirus for two days and see what direction this takes. If in a couple of days it feels like a regular cold like all your others you’ve ever had, go back to normal life. You can have Covid-19 and stay in your house, protected and perfectly safe. If someone is immune compromised in the house, such as a very elderly individual, isolate them completely from the person that’s sick or that person needs to leave the house. The same applies if someone is known to be immune compromised after undergoing chemotherapy, for example. Touching a person or touching a contaminated surface then touching your face is what will transmit the disease.

What Should You Do If You Get the Disease?

This disease is primarily spread through home and family transmission, such as from mother to daughter, from brother to sister. If you develop a fever or other symptom, isolate yourself in the house in a separate room, with a separate bathroom if at all possible.

If the person has to come out of the room, have that sick person wear a mask and wash their hands with sanitizer before leaving the room and entering the rest of the house. The sick person should touch as little as possible, clean after themselves, and then head back to their self-isolation. Don’t have sustained contact with this person and don’t do things like repeatedly taking their temperature. However, don’t be afraid to stay at home.

The healthy person in the house should not be touching the sick person or be around the sick person whenever they can avoid it. The sick person should get through the illness within seven days but remain vigilant as their recovery relates to washing hands, wearing masks and so on for seven to ten days. Once the sick person is feeling well, they can have more contact with others. However, continue cleaning your hands and put on a mask.

If You’re Sick, When Do You Need to Go to the Hospital?

You only really need to go to the hospital if you’re short of breath. That’s the clearest indication and a steadfast rule. Don’t go to the hospital if you have a fever, body aches, a cough, or you simply think you might have Covid-19. A lot of people presenting to hospitals are being sent home to wait out the four to five days of the disease. Of all the people who get Covid-19, only 10% become short of breath and need to go to hospital. Of those, only about 10% of people turning up at the hospital that have symptoms will actually be admitted to be monitored. About 1% of those will be put on a ventilator. The overwhelming majority of people come off the ventilator seven to ten days later. Going to the hospital is not a death sentence.

Telemedicine is the best way to avoid overloading the medical services. Call in with your symptoms and heed the advice given by your health authorities. In Canada, call 811 and follow their directions. However, if you’re short of breath, head to the hospital.

Do I Need to Get Tested?

No. Let people who really need it, get tested. As testing ramps up more people will have access. If you have symptoms like the flu with the features mentioned, you probably have Covid-19. If your community is having an outbreak of the disease then you may need to be tested.

Are Kids Getting Infected with Covid-19?

There have been almost no cases of Covid-19 disease in kids between zero and fourteen years old. A few newborns are getting it, which is thought to be due to contact. Kids are not getting critically ill or dying. We’re still waiting to understand whether kids are vectors and assume for now that they are. At the moment, kids aren’t dying and kids aren’t getting sick.

Transmission

The absolute vast majority of transmissions are from droplets. When a droplet leaves an infected person, it lands and is quickly picked up by an unsuspecting person, transferring it from hands to face. Very, very little transmission occurs through the air. You would have to be very close to a person spitting or coughing and have a droplet transferred to your face. This occurs in a hospital when the patient is suctioned or a similar aerosolized procedure is done. This is where a N95 mask is needed. Most nurses use an ordinary surgery mask when in hospitals attending to Covid-19 patients.

It takes approximately two days to be symptomatic. You are infective in those two days, keep a list if you can of all the people you interact with so that you’re able to inform people if you’re in contact with someone in the two days prior to you becoming symptomatic.

Health care providers that are on the front line taking care of infected patients in a closed room and doing nasal swabs without protection are getting very sick. With the proper protection nobody is getting sick, even in working in a Covid-19 hospital ward.

Is it really safe to go on a run or a walk if you adhere to the spacing directions?

Yes, it is. Take sterilising liquid with you and wipe down anything you touch. Keep your distances. Just don't get sloppy and don't assume that other people have your diligence. Wear a mask so that you continue to train yourself not to touch your face and to communicate to other people that you're taking it seriously. Wipe everything down before you touch it and don’t touch your face. A bandana is okay if you don’t have a mask. It’s not preventing you from getting the disease, but just to prevent you from touching your face.

What if you don't have a sterilising liquid?

Coronavirus is not robust. It dies immediately upon disinfection. Use your elbows or other body parts to open and close things, then wash with soap as soon as you can.

Do I need to wipe down groceries when bringing them into the house?

It’s a reasonable idea to have the delivery person leave the goods outside your door, pick it up with gloves then wipe it down. That’s certainly reasonable but the most important part is, as stated, to wash your hands, don't touch your face. Don’t pick up the package with your bare hands. Clean your hands immediately. If picking up coffee from a Starbucks drive-through, Purell your hands or disinfect your hands after taking the cup.

It is fallacy that this only affects older people?

Yes, this is affecting everyone above approximately fourteen years old. Everybody is getting this disease even without preconditions. Older people often do worse, while men are more often infected than females. The younger you are, the less likely it will happen. The older you are, the more likely you are to get the disease.

Is it true that Ibuprofen should be avoided when feeling sick?

In practice, 90% of people will get a fever and a cough. Those who become sicker get short of breath. Those who can’t walk to the bathroom need a ventilator. They usually settle out after a day and after seven days they get off the ventilators. There’s good enough data coming out of Germany now that ibuprofen should not be used since it causes more inflammation. If you have a fever use an alternative like Tylenol. Take glutathione if you use Tylenol.

Immunity

The people who get the disease are shedding the virus one or two days before they get the disease. The stories of people getting sick again are about people that haven't fully recovered. If you've had it, and are through it, you're immune. This virus is now in circulation and as it mutates over the next few years, it will become milder and milder. Five years from now it will be just a cold.

Finally, a study in China has determined that microbiome health is a more significant factor than age when it comes to coronavirus deaths.

A Positive Outlook During the COVID-19 Outbreak

The vast majority of the world’s population that has access to any source of media outlets is currently under the collective fear-driven news cycles of an upcoming apocalypse due to the emergence and spread of the coronavirus, COVID-19.  As I write this, a CCN alert flashed across my screen stating that there were 3,000 cases of coronavirus in the United States with 62 deaths. This number was updated six hours later to 3,155 cases. No doubt by this evening, this number will be adjusted upwards, a trend that will probably increase for the foreseeable future, the exact end-point being entirely unknown.

While all due caution is absolutely imperative and all medical guidance should be strictly followed, as I stated in my other pieces regarding coronavirus, parts one and two, I couldn’t help but reflect on what appears to be an innate tendency of all living systems to trigger homeostatic mechanisms that force self-correction whenever one side of its expression become too polarized to either extreme. It appears that evolution itself has to adjust course in light of new information by self-correcting evolutionary realignments.

We know from history that disasters are often followed by tremendous gains and achievements. The extreme horrors of World War II were followed by an extraordinary period of increased economic, social, and political global growth and relatedness, rather than nationalism, which was unprecedented in history. It was the same with 9/11. Immediately following those events, murder rates plummeted, and kindness and appreciation were unleashed upon civil servants, hospitals, demolition crews, and emergency medical services. Out of control real estate, airline, and hotel prices were corrected, and there was increased dedication to global causes. The list is much more extensive but undoubtedly real, when previous issues and statistics were assessed through this lens. 

One of the greatest and most well remembered political speeches of all time was delivered at the first inauguration by Franklin D. Roosevelt as the 32nd President of the United States. At that time, the nation was at the peak of the Great Depression and the speech was heard by tens of millions of American citizens.  

“So, first of all, let me assert my firm belief that the only thing we have to fear is...fear itself — nameless, unreasoning, unjustified terror which paralyzes needed efforts to convert retreat into advance. In every dark hour of our national life a leadership of frankness and of vigor has met with that understanding and support of the people themselves, which is essential to victory. And I am convinced that you will again give that support to leadership in these critical days.”

He went on to say, “There is no unsolvable problem if we face it wisely and courageously. There are many ways in which it can be helped, but it can never be helped merely by talking about it. We must act and act quickly.”

So, while we’re currently in the grip of the downward, fear-driven spiral that’s mostly emphasizing the potential catastrophic consequences that may or may not result from CoVID-19, how can we best compensate for those fears and reflect on the potential upside of this situation? And most importantly, what can we do to mitigate this fear-driven spiral into ennui, inaction and a potential sense of hopelessness?

What follows are some compensatory ideas that are in no way meant to downplay or minimize the suffering that many people have gone through or are about to go through. However, if we’re to embrace the homeostatic principles that there are no crises without blessings and we don’t live in a one-sided world where there are only losses without gains. So, let’s examine a few potential consequences that might arise from this present situation. 

  1. Global warming. The global warming crisis seemed to be almost impossible to reign in, despite the most well-meaning attempts by a subset of global political and environmental leaders. With all kinds of global travel grinding to a halt, it’s inevitable that at least a pause to the upward tend of global warming, primarily due to the carbon footprint induced by travel, will be inevitable. When climate change experts examine this effect in months or years to come, maybe their statistics can be used to convince others of the need for a more sustained and ambitious action regarding this omnipresent threat.
  2. Exotic animal trade. China stopped the trade in wild animals for the purpose of consumption such as dogs, rodents, yaks, snakes, porcupines, and bats when the link between animals and the coronaviruses was discussed. Officials from the Chinese Center for Disease Control and Prevention said they isolated the virus taken from a seafood and wildlife market in Wuhan believed to be the source of the outbreak. The coronavirus that caused the 2003 SARS outbreak was traced to the civet cat, a wild animal considered a delicacy in parts of South China. The civet is used in the popular dragon tiger phoenix soup, which is believed by locals to help with arthritis, stimulate poor blood flow, and revive decreased libido. The movement of humans toward recognizing animals as sentient beings may be assisted, a movement initiated and kept alive by the PETA president and founder Ingrid Newkirk and written about in her best selling book, Animalkind.   
  3. Consumerism. Our western culture is an extroverted and consumer driven one. Perhaps by sitting at home for extended periods, with the stores, at least at present, bare of many types of consumer goods, we can reflect on our impulse to seek emotional consolation outside of ourselves by buying new items that we may not need. I do realize that the beast of online shopping may be unleashed but here’s hoping that the online stores may not be able transport unnecessary consumer goods due to the transport channels being slowed down. 
  4. Possibility of increased relatedness. A series of recent posts by Rebecca Arendell Franks, who along with her husband and child has now been on forced quarantine in China for over 50 days, is quite illuminating. She said that, “Our family life has never been better. Usually, one weekend is long enough before I’m ready to send each of us back to school or work. But for SEVEN weeks, we’ve been home together with very little outside influences or distraction, forced to reconnect with one another, learn how to communicate better, give each other space, slow down our pace, and be a stronger family than ever before. I encourage you to read the link regarding this at the end of this article. 
  5. Nature emerging from the technological and human encroachment upon its domain. It’s been observed in Wuhan that the sound of birds singing has been heard for the first time in a long time since the crisis began. In Wuhan, Rebecca Arendell Franks commented, “Right now, I hear birds outside my window (on the 25th floor). I used to think there weren’t really birds in Wuhan, because you rarely saw them and never heard them. I now know they were just muted and crowded out by the traffic and people. All day long now I hear birds singing. It stops me in my tracks to hear the sound of their wings.”
  6. Learning new technologies for virtual relatedness. How does ZOOM actually work and can I teach my grandfather to hook up? 
  7. Learning to cook. Maybe we can now, instead of ordering food in or going out to a restaurant, learn to cook for ourselves and make that tasty, healthy recipe that we’ve always been meaning to get around to. 
  8. Examination of our national leader’s skill set in crisis management. 
  9. Exercise. Finally, the Peloton bike or treadmill can be put to good use!
  10. Non-drug based medicine. Examination and renewed interest, along with a certain amount of respect given, of alternative methods for treating symptoms of coronavirus, and indeed other viral related illnesses such as the three studies currently underway in China on the use of IV vitamin C for the treatment of corona related pneumonia. See blog posts part one and two for further details. 
  11. Lifestyle factors. An awareness of how lifestyle factors such as diet, exercise, sleep, and stress play an extraordinary role in immune efficiency.
  12. Business awareness. Small business will become aware of cash flow issues, staffing needs, and unemployment issues.
  13. US Federal Reserve slashing interest rates. Maybe now is the time where one can afford the mortgage on a new home that seemed out of reach a few years before. Or maybe people with fixed student loan payments can borrow money at a lower rate to pay those off. 
  14. Learning to connect with others non-locally. There’s a common misconception that in order to benefit from the full experience of another human being we have to be in their physical presence. Yet if we truly love someone and see both sides, the dark and the light, of their being, we can sit quietly, hold them in our hearts, and send deep love and appreciation to them for being in our lives. It helps if we have an understanding of the Einstein-Podolsky- Rosenberg paradox (EPR paradox) in quantum physics that showed that if one particle had ever been in contact with another particle, if they were separated across the full expanse of the universe in space and time, they’d be eternally intertwined or entangled. Einstein called it “spooky action at a distance.”  

(Please note this is a very simplistic explanation for quite a complex issue.)  

A few more quick positive outlook possibilities:

  1. Increased revenues for the medical device industry.
  2. Increased revenues for the supplement industry.
  3. Increased connection to neighbours to assist with grocery runs.
  4. Appreciation for the media and their updates.
  5. Appreciation for our doctors, nurses, and miscellaneous healthcare workers and politicians for rising to the occasion and setting minute by minute guidelines
  6. Appreciation for mobile device apps, Google, Facebook, Instagram, and Twitter for keeping us informed.
  7. Appreciation and understanding of our own vulnerability.
  8.  Resetting of values and personal reflection on what is truly meaningful, including a reorganization of values and priorities.  

So, as we step back, reassessing our priorities both personally and collectively, these are a few thoughts I’ve had in these troubling and somewhat frightening times. If Nobel Prize winning chemist Ilya Prigogine is to be believed, even insentient material systems have an inherent drive to self-organization. When physical systems get pushed too “far from equilibrium” they escape this chaos by leaping into higher level states of organized order, referred to as “order out of chaos”. My challenge to all of you is, what inherent dynamic force may be at play in your life, driving you toward greater and greater wholeness, complexity, and consciousness in the midst of these very challenging times? What thoughts of this nature have come to your mind in these times?

While you contemplate having a positive outlook and these deeper thoughts, stay safe, follow your governmental and health directive guidelines, and do what you need to do to get through these times. We must attempt to move beyond the greatest fear, which is that of fear itself. 

See part one and two for specific coronavirus updates and treatment suggestions. 

Preventive and Treatment Strategies for COVID-19: Part 2

Part 1 of this series can be found here

Keep Fighting Fit

It’s only common sense to keep our bodies as healthy as we can to help us to fight off all kinds of illnesses. Obviously, we’re always going to encounter germs in our daily lives but keeping our immune systems in good condition is an excellent defense strategy. 

Follow these steps: 

  • Get enough sleep, ideally seven or eight hours each night. 
  • Try to reduce stress where you can in your life. 
  • Make sure you’re on a diet that contains plenty of plant-based antioxidants, minerals and vitamins and eat healthy food to keep your body and immune system in good shape. 
  • Make sure that you always get enough exercise whenever you can to keep everything in working order. 
  • Stop consuming all sugar
  • Stop smoking or vaping immediately. 

Wear Mask Protection

Get some N95 facemasks before supplies are gone. 

  • An N95 respirator is a respiratory protective device designed to achieve a very close facial fit and very efficient filtration of airborne particles.
  • The ‘N95’ designation means that when subjected to careful testing, the respirator blocks at least 95% of very small (0.3 micron) test particles. If properly fitted, the filtration capabilities of N95 respirators exceed those of facemasks. However, even a properly fitted N95 respirator doesn’t completely eliminate the risk of illness or death.

N95 respirators aren’t designed for children or people with facial hair. Because a proper fit cannot be achieved on children and people with facial hair, the N95 respirator may not provide full protection.

A full list of FDA approved respirators is provided below. These might already be out of stock everywhere but put orders in regardless of the backorder. 

  • 3M™ Particulate Respirator 8612F
  • Pasture Tm F550G Respirator
  • Pasture Tm A520G Respirator

Wear Eye Protection

Transmission through the eye is a common vector for the aerosolized virus. One of the common transmissions is touching public items then touching your face and transmitting it through the eye. Frequent hand washing and excellent hygiene are paramount.

Drug treatments

General

It’s important to be aware that there are at present no antiviral treatments that are effective for the treatment of Covid-19. There are currently no vaccines available for SARS-CoV-2. The present treatment approach is for supportive care and symptom management only. If people become severely ill, vital organ function support is necessary, usually in a hospital or ICU setting. 

Here’s a link to the number of drugs that as of February 2020 were being studied for the treatment of Covid 19.

The CDC also has a site discussing antiviral medications for the flu here

Chloroquine Phosphate

A Chinese multicenter collaboration group suggested this malaria drug might be useful for the treatment of Covid-19 pneumonia. In another recently published paper, the use of hydroxychloroquine, 400 mg twice daily followed by a maintenance dose of 200mg twice daily for four days, was found to be more potent than chloroquine to inhibit SARS-CoV2. Hydroxychloroquine was also shown to have fewer side effects than chloroquine while still addressing the inflammatory cytokine storm induced by the virus. 

The recommended dose of chloroquine phosphate was 500mg twice daily for ten days. 

Alinia (Nitazoxanide)

This drug is traditionally is used as an antiparasitic and has been studied for the treatment of Middle East Respiratory Syndrome (MERS) coronavirus. This drug has been shown, in test tube studies at least, to have activity against MERS-CoV and other coronaviruses. Further studies are being undertaken to determine its true efficacy. The recommended dose was 1000mg twice daily for 10 days.

HIV Drug - Kaletra (lopinavir-ritonavir)

A 62-year-old man who became Spain’s first coronavirus patient is believed to have made a full recovery after being treated with an HIV drug called Kaletra or lopinavir-ritonavir. Miguel Ángel Benítez was admitted to the Virgen del Rocio Hospital in Seville, where he received an antiretroviral drug, which has been used to treat HIV and AIDS for over ten years. The drug was combined with interferon beta, which is a protein that prevents cells from becoming infected and is administered to multiple sclerosis patients. Santiago Moreno, head of infectious diseases at the Ramón y Cajal hospital in Madrid, said that the “SARS-CoV-2 protease is very similar to that of HIV,” using a name that sometimes refers to the novel coronavirus.

Mast Cell Activation Syndrome (MCAS

In this February 2020 article it was discussed that “Coronavirus infection (regardless of the various types of corona virus) is primarily attacked by immune cells including mast cells (MCs), which are located in the submucosa of the respiratory tract and in the nasal cavity and represent a barrier of protection against microorganisms. Virus activate MCs which release early inflammatory chemical compounds including histamine and protease; while late activation provokes the generation of pro-inflammatory IL-1 family members including IL-1 and IL-33.” The article proposes for the first time that inflammation by coronavirus may be inhibited by anti-inflammatory cytokines belonging to the IL-1 family members. 

It may be that individuals with MCAS are at higher risk for developing the serious consequences of this infection and thus may benefit from much stricter control of the mast cell activation syndrome if infected. Nebulized cromolyn and/or glutathione or n-acetyl cysteine (NAC) and/or IV Benadryl may be extremely helpful in these conditions.

Alternative Remedies

In addition to the previous suggestions, there are a number of natural substances and supplements that can be of help in lowering your risk of becoming infected with the current coronavirus. Many of these approaches are not specific treatments for the coronavirus but have been studied and referenced in the literature as having antiviral effects.

Vitamin C

It’s common knowledge that vitamin C is good for us but there have been clinical trials in China regarding the intravenous use of vitamin C to help treat patients suffering from Covid-19. A dose of between 100 and 200 mg/kg body weight (this is equal to quite a low dose of between 7.5 and 15 grams for a 180 lb person) was given to patients intravenously for three consecutive days and was very effective. There are currently three clinical trials sponsored by the Chinese government studying vitamin C. Dr. Tom Levy and Dr. Jeanne Drisko from the integrative U.S. medical community are involved in the Chinese studies. Dr. Richard Cheng MD PhD, who has been studying IV vitamin C, is suggesting the use of oral vitamin C.  The one study can be found at the clinicaltrial.gov website. High dose vitamin C at 20 grams has been used in ICUs for some time in an attempt to reduce mortality from septic shock, in one study from 40% to 4%. However, most hospitals refuse to administer IV vitamin C for viral infections since it’s not considered standard of care. It’s quite likely that these Chinese studies will place high dose IV vitamin C therapy for viral infections a part of mainstream treatment in the future.   

In the United States, doctors who have pioneered vitamin and mineral therapies have also been studying the effects of intravenous vitamin C, with a February 2020 paper being published. “Early Large Dose Intravenous Vitamin C is the Treatment of Choice for 2019-nCov Infected Pneumonia” recommends this for the treatment for pneumonia resulting from the virus. 

A recommended minimum oral daily dose of vitamin C is 2,000mg. Twice daily dosing is recommended due to the water-soluble nature of vitamin C and the fact that it’s quickly metabolized. If one wants a liposomal formulation, certain brands do provide this option or you can make your own by adding https://klinghardtinstitute.com/one or two teaspoons of Body Bio PC (phosphatidyl choline) to 2 grams of powdered vitamin C and stirring it vigorously. Divide your dose and take twice daily. Watch for diarrhea if your dose is excessive.

Vitamin D

This is also very important. It’s recommended that we have a minimum of 2,000 IU and a maximum of 10,000 IU per day. The usual daily dosage for vitamin D is 1000 IU per 25 pounds of body weight. It’s best to get vitamin D levels measured and to have serum levels in Canada between 150 and 200 nmol/l. People tend to have lower vitamin D levels in the fall and winter months due to fewer hours of sunlight. However, our bodies need vitamin D to support our immune system so we need to make sure that we’re getting enough of this vital ingredient. All the cells in our bodies have receptor sites but only two types are in every cell. These are thyroid hormone receptor sites, which are responsible for metabolism, and vitamin D receptor sides. This gives you some idea of the importance of vitamin D in maintaining our overall health and wellbeing. Research indicates that vitamin D may even be more effective than the flu vaccine when it comes to flu prevention. Consequently, it’s a good idea to include vitamin D in the fight against Covid-19.

It has been reported by many clinicians that high doses vitamin D of 50,000 IU over three days is highly effective in treating acute viral infections. This dosing is contraindicated in any person with lymphoid malignancies and in any patient with granulomatous diseases such as sarcoidosis, where high calcium levels are an issue. Also, a relative contraindication is pregnancy. This is by no means an approved treatment for Covid 19.   

Zinc 

This has been shown to be effective in fighting infections and also supports the immune system. Zinc can help to prevent coronavirus and other viruses multiplying in the throat and nasopharynx, which is the space above the soft palate at the back of the nose connecting the nose to the mouth and allowing us to breathe through our nose. When you begin to exhibit symptoms of the illness zinc capsules can be taken several times a day. The recommended dose for zinc is between 40 and 50mg per day.

Silver 

This has also has some antibacterial and anti-viral properties. If you use an official product such as Argentyn 23 you have a clear idea of how much silver you are putting into your body and don’t run the risk of taking too much. If you have viral symptoms, the recommended dosage is one teaspoon seven times per day. However, this is only a short-term solution as there are side effects such as skin discoloration if silver is used for too long.

Andrographis 

This herb has been used in traditional Chinese medicine and Ayurveda for a long time. It’s been shown that the herb’s compounds have anti-inflammatory, antiviral, and antioxidant benefits. The herb boosts the immune system and is often employed to fight cold and flu symptoms. As a result it does have a role to play in treating the latest version of coronavirus, at least in the short term. One capsule twice a day is the recommended dose of the herbal supplement if you exhibit symptoms of the virus. There are a number of referenced articles that demonstrate its effectiveness against the influenza virus, particularly with regards to respiratory symptoms. Lyme patients with active disease may have a Herxheimer reaction as it increases lymphocyte proliferation and interleukin -2. 

Elderberry

Another natural short-term solution if you have typical flu symptoms, such as a cough, sneezing, and a runny nose, is elderberry extract taken up to six times a day. Elderberries come from the European elder tree, which is not the same as the American Elder, Elderflower, or Dwarf Elder. People believe the extract helps with the common cold, influenza, boosts the immune system, and reduces inflammation.

Calendula

Is also known as marigold and has been used as a medicinal herb for a very long time. The plant’s extracts have antiviral, antigenotoxic, and anti-inflammatory properties that can be used to treat some of the symptoms of Covid-19. 

Taraxasterol 

Also known as dandelion, this can also be used as an anti-inflammatory supplement. Dandelion also has antioxidant properties and some studies indicate that it has antiviral benefits and is good for our immune system. 

Propolis 

This is known to be a potent antiviral, particularly in animal models infected with corona virus. Dr. Ramzi Asfour, an infectious disease physician, suggests Beekeeper’s Natural propolis spray. Propolis increases cellular immune responses and has antiviral properties. Propolis can also be dispensed in a vaporizer (available from Ki Science) and has been shown to neutralize circulating mycotoxins in the air. 

CAUTION: Propolis is not to be taken if you have a Honey or Bee allergy.

Scutellaria

Most commonly known as skullcap, this is another flowering plant with medicinal qualities. It has been used to treat conditions such as respiratory infections and inflammation and have antibacterial, antiviral, and antioxidant properties. 

Artemisia annua

Also referred to as sweet wormwood this has been used in traditional medicine for some time and has been employed in medicines to treat malaria. There are some indications that the plant may also be used to treat some coronavirus symptoms, particularly the SARS related coronavirus.

Dr. Klinghardt, in his extremely informative PowerPoint presentation, has recommended placing calendula, licorice, scutalaria, andrographis, artemisia, and dandelion tinctures, calculated for their weekly dose, in a blender with 100mls of clean water and 14 grams of vitamin C powder. Add two tablespoons of liquid Body Bio PC phosphatidyl choline and blend for a few minutes. Put this mixture in a glass and keep in the fridge. Each day, drink one seventh of the dose.

Beyond Balance Herb Tinctures- IMN-V-III

This product contains 19 different herbs with antiviral and immune modulating effects, including licorice, skullcap, dandelion, and rosemary.

Peptides

Some patients have access to peptides with immunomodulating effects. I recently returned from a peptide conference in Los Angeles and the following peptides were suggested for their antiviral and immune modulatory effects.         

  • Thymosin alpha 1 - This is the most recommended peptide for immune stimulation. This should be used as a treatment adjuvant and a prophylactic and can help with many conditions beyond viral illness. The recommended daily dose in 450mcg.
  • Thymosin beta 4 - Natural killer cells are essential for defense against tumors and virus-infected cells. The cells are activated in by ONF-Gamma. This is activated by IL-18, which TB4 upregulates. Therefore, TB4 has ben studied for many Immune related diseases. Caution is warranted with cancer patients as it can increase the growth of cancers.
  • LL 37 (cathelicidin) - This peptide has broad spectrum antiviral/microbial, fungal effects. Peptides such as LL 37 are key components of innate defenses against infection, with both microbial and host defense modulatory functions. In addition to their well documented bactericidal potential, CHDP have more recently been shown to have antiviral properties. LL 37 has ben shown to be highly effective in preventing viral attachment to cells. It’s been used in several virus studies and has been anecdotally reported to work well with respiratory tract viruses.
  • Pentosan polysulfate - Polysulfates are highly potent and selective inhibitors of the in vitro replication of HIV and other enveloped viruses such as coronavirus. The anti-viral activity of polysulfates is a result of their shielding of the positively charged sites in the V3 loop of the viral envelope glycoprotein gpl120, which inhibits viral entry into cells and allows for immune clearance. The usual dose is 2mg/kg.
  • Selank - This is a variant of the immune molecule tufstin and has potent antiviral properties in addition to its neurological effects. The antiviral characteristics of Selank were evaluated both in vitro and in vivo against the influenza virus strain H3N2 and H5N1 and the type 1 and 2 Herpes virus. It was revealed that Selank might have a prophylactic effect during influenza infection and a therapeutic effect during a herpes virus infection. It could also be helpful with Covid-19.

The Hoffman Centre Programs for cold and flu treatment

We have developed a number of potential programs for acute cold and flu treatment. While the details aren’t specific to coronavirus many of the recommendations are applicable to dealing with virus that commonly infect us in the winter months. These recommendations are in no way a substitute for quick and rapid communication with your healthcare providers and the guidelines as issued via websites (like this one), previously mentioned at the beginning of this article.

Any treatment that you decide to undertake should start at the first onset of symptoms. The following instructions are to be followed for the duration of symptoms unless otherwise stated. 

Immediately stop consuming any sugar, since this paralyzes your white blood cells, the body’s first defense against illness. Make sure you also get plenty of sleep, at least between 7.5 and 8.5 hours per night. Hot apple cider vinegar baths twice a day will help to speed up the progression of the cold and reduce your fever, potentially halving the amount of time you may have symptoms. Add two cups of apple cider vinegar to a full bath of hot water and soak for twenty minutes, remembering to fully submerge your body. If the illness has affected the chest, you can steam water over the stove, add eucalyptus drops, and breathe in the vapor for some relief from your symptoms.

Please note that this treatment program is not to be undertaken if you are pregnant or breastfeeding.

Adult Dosage (age 16 and up)

Oscillococcinum is the first supplement to take at the first sign of a cold or flu. This works better for flu like symptoms (not cold symptoms) and you simply need to follow the directions on the package.

  • Vitamin D - 50,000 IU for three days. Contraindication to use of high dose vitamin D is lymphoid malignancies, pregnancy, and granulomatous diseases such as sarcoidosis
  • Mycelized vitamin A - 100,000 IU for three days. Contraindicated in pregnancy. 
  • Vitamin C - 1 to 2g two to three times daily (titrate dose upward to bowel tolerance)
  • Astragalus Tincture - 1 dropper three times daily
  • Echinamide Anti-Cold tincture - 2ml three times daily
  • Probiomax probiotic - 1 capsule two times daily 
  • Saccharomyces Boulardii - 2 capsules twice daily
  • Garlic/allicin - 2 capsules three times daily after meals. Open the capsule in 6oz of water and let sit for two minutes before drinking.
  • Argentyn 23 colloidal silver  - 1 teaspoon three times daily in water
  • Andrographis - 2 dropperfuls twice daily in water
  • Transfer Factor Multi Immune - 2 capsules twice daily
  • DHEA - 50mg per day for two to three days will boost the immune system and fight infection. Note that this is for adults only.
  • For muscle aches take arnica and/or magnesium malate - 2 caps three times daily
  • Add anti-viral supplements such as olive leaf extract - 2 capsules three times daily, oil of oregano (brand name ADP) 2 capsules three times per day and lysine 500mg 2 capsules three times daily

IV Treatment for 3 days

  • IV vitamin C - 15 to 35g once per day. Check for G6PG enzyme deficiency first
  • Alternatively - IV Hydrogen Peroxide, once per day

Child Dosage (2 years and older)

    • Mycelized vitamin A – 10,000 IU for three days
    • Vitamin D - 10,000 IU for three days
    • Vitamin C - Between 250 and 500mg three times daily (to bowel tolerance)
    • Echinamide Anti-Cold - Between an third and a half a dropper three times daily 
    • Probiomax probiotic  - Half a capsule twice daily
    • Saccharomyces Boulardii - Half to a full capsule twice daily
    • Garlic - Half to a full capsule twice daily after meals. Open capsule in 6oz of water and let sit for two minutes before drinking. Note that it is difficult to get a child to take this.
    • Argentyn 23 colloidal silver - Half a teaspoon three times daily in water
    • Transfer Factor Multi Immune - 2 capsules daily

Maintenance and Prevention 

Remember to stop consuming any sugar immediately, since sugar paralyzes your white blood cells, which provide your body’s first defense against sickness. Make sure you get at least 7.5 to 8.5 hours of sleep each night as well. This treatment program is not for women that are pregnant or breastfeeding.

Throat Infection

  • Zinc - 30 to 50mg lozenges. The topical antimicrobial effect can be important in infections of the throat.
  • Biocidin throat spray - 2 sprays three to five times daily
  • Propolis throat spray – 5 sprays three times daily
  • Argentyn 23 throat spray- 3 sprays three times per day
  • See your doctor for a throat swab to exclude strep throat and/or mononucleosis

CAUTION: Propolis is not to be taken if you have a Honey or Bee allergy.

Nasal Irrigation

Use a Neti Pot, particular with upper respiratory infection, for three days. 

  • Place one dropper full of Nasya wash into your Neti Pot with warm water and a heaping quarter teaspoon of pure non-ionized Neti Pot Salt. 
  • Stir until salt is dissolved. 
  • Add three drops of Echinacea Anti Cold and Core Phyto Lavage to the solution. Use this to perform the nasal wash as directed by the Neti Pot instructions on the bottle.

Air Spray

  • Add a quarter teaspoon of salt to the bottom of an empty spray bottle. 
  • Add five drops of Thieves, an essential oil by Young Living, on top of the salt as this will help to dissipate it, 
  • Fill bottle with warm water. 

Now you now have an air spray that will assist in lowering counts of viruses, bacteria, and molds in the air. 

  • Spray your home, office, and other areas a couple of times a day. 
  • You can also put Thieves drops into your palms and cup your hands over your face then inhale five or six times. 
  • This will prevent you from contracting a sinus or lung infection, especially during long distance flights.

Dr. Alex Vasquez Recommendations

Dr. Alex Vasquez is an internationally recognized author, presenter, and teacher, particularly with regards to immune related disorders. He earned three doctorate degrees from fully accredited universities in the United States and has worked in various clinical facilities ranging from private boutique clinics to inpatient hospital settings. Dr. Vasquez has published 120 books, articles, letters and editorials in various magazines and peer-reviewed medical journals, including British Medical Journal, Journal of the American Medical Association, Nature Reviews Rheumatology, and Annals of the New York Academy of Sciences.

What follows are his recommendations for viral infections and are not meant to be specific treatments for any infections, particularly coronavirus. I’ve included these references for those curious patients who are always checking out protocols online.  

Antiviral

  • Powdered Glycyrrhiza Glabra - 1.5g BID for a maximum of four weeks. Works as a tea. This is a great expectorant but avoid in heart failure patients, monitor BP and potassium
  • Zinc - Between 20 and 50mg a day
  • Selenium – 400 to 600 ug per day
  • Iodoral Iodine/Iodide - 12.5mg a day for two weeks
  • Melissa officialis - Dose variable depending on formulation
  • Carica papaya leaf extract
  • Grape seed extract (see Biotics Research Bio-Cyanidins below)

Viral Anti-replication

  • SAMe - 400mg TID plus Betaine TMG 3g BID for one week
  • Methyl-Folate - 1.6mg od for one to two weeks
  • Alpha Lipoic Acid - 300 to 400mg TID plus Thiamine 100mg (or B Complex High Potency)
  • NAC - 600mg BID to TID between meals

Immunonutrition

  • Paleo-Mediterranean Diet with no refined carbohydrates 
  • Protectamin Whey Protein - 45g a day for immune dipeptides, if dairy tolerant
  • L-Glutamine powder - 9g TID between meals 
  • Vitamin A - 100,000 IU load for three to five days, then 25,000 to 50,000 IU for two weeks (not during pregnancy)
  • Vitamin D3 - 100,000 to 300,000 IU load for one dose, then 10,000 IU for ten days to increase endogenous antimicrobial peptides
  • Nordic Naturals Arctic Cod Liver Oil without vitamin D - One teaspoon TID with meals
  • Selenium - 600-800mcg/d plus 800 IU vitamin E per day
  • Melatonin - 20mg qHS
  • Ubiquinol CoQ10 - 300mg od to protect the mitochondria
  • Biotics Research KappArest - Three capsules BID as NFKB hijacked by viruses for replication
  • Biotics Research Bio-Cyanidins - One tablet BID (contains marine pine bark and grape seed extract)
  • Biotics Research UltraVir-X - One capsule TID (Red-rooted sage, Boneset, Actratylodes, Sweet Violet, Wheat Grass, Bupleurum, Astralagus, Bee Propolis, Maitake, Black Walnut, Hesperidin, Rutin)
  • Biotics Research POA-Phytolens (Cats’ Claw, Lens esculenta extract) - One capsule TID
  • Consider broad spectrum multi such as Metagenics PhytoMulti at two tablets per day (adjust dosage of Zinc and Selenium above)

CAUTION: Propolis is not to be taken if you have a Honey or Bee allergy.

Treatment and Vaccines

  • There is no vaccine currently available to combat the current coronavirus outbreak. 
  • The best advice is to protect yourself in some of the ways outlined above and avoid contact with infected individuals or locations where you might encounter potential carriers of the virus. 
  • There’s no specific antiviral treatment that’s recommended for patients with the Covid-19 virus. 
  • Those infected should receive the medical treatment required to deal with their symptoms, including care of vital organs in the most severe cases. 

In Conclusion

  • While we still don’t know everything about the current Covid-19 virus, common sense and taking precautions and preventative measures will be a great help. 
  • The feeling in the medical community is that the virus is likely to become less aggressive and less dangerous over time, as many viruses do, although this is far from certain. 
  • Many viruses adapt, mutate, and continue to live with us everyday. Time will tell if the latest threat will follow the same pattern in the coming weeks and months.

As a final note, in the current circumstances, if you’re suffering from what you’d describe as symptom similar to flu such as a cough, fever, chills, or an aching feeling in the body, please don’t visit the office. If you have an appointment we can do a phone consultation instead or even connect via zoom online. Staying at home will allow you the opportunity to recover and also reduce the likelihood that you’ll pass on the virus to others.

Resources

 https://www.cdc.gov/coronavirus/2019-ncov/about/prevention.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fabout%2Fprevention-treatment.html
 Courtesy of Tailor Made Pharmacy  
https://www.cdc.gov/coronavirus/2019-ncov/about/prevention-treatment.html 
 Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za ZHi 2020 Feb 20. 43:E019
https://www.ncbi.nlm.nih.gov/pubmed/32150618
 https://www.sciencedirect.com/science/article/pii/S1876034116300181
https://nypost.com/2020/03/05/coronavirus-patient-in-spain-reportedly-recovers-after-being-treated-with-hiv-drug/
https://www.ncbi.nlm.nih.gov/pubmed/32013309/
https://clinicaltrials.gov/ct2/show/NCT04264533
 http://orthomolecular.org/resources/omns/v16n11.shtml
 Epidemic Influenza and Vit D. https://www.ncbi.nlm.nih.gov/pubmed/16959053
 https://www.argentyn23.com/
 https://link.springer.com/article/10.1007/s00705-016-3166-3
 Biol Pharm Bull. 2009 Aug; 32 (8) : 1385-91
https://www.webmd.com/vitamins/ai/ingredientmono-434/elderberry
 http://insajournal.in/insaojs/index.php/proceedings/article/view/305
https://www.ncbi.nlm.nih.gov/pubmed/28480383
 Ferreira L, Effect of the ethanolic extract from green propolis on production of antibodies after immunization against canine parvovirus (CPV) and canine coronavirus (CCOV). Brazilian Journal of Veterinary Research and Animal Science 49.2 (2012):116-121. http://www.revistas.usp.br/bjvras/article/view/40267
Dr Horowitz newsletter 
 https://kiscience.com/product/propolair-propolis-diffuser-therapy-model/
 https://www.sciencedirect.com/science/article/pii/S2211383520302999
http://www.hdbiosciences.com/Download/Identification%20of%20natural%20compounds%20with%20antiviral%20activities%20against%20SARS-associated%20coronavirus.pdf
 Antiviral Research 67, No 1 (2005): 18-23
 https://klinghardtinstitute.com/
 Courtesy of Tailor Made Pharmacy.
 https://www.inflammationmastery.com/